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Quantum Information 

Simplified Description: Quantum states are represented by vectors; 

operations are represented by unitary matrices. 

General Description: Quantum states are represented by density matrices; 

allows for a more general class of measurements and operations. 

 

Classical Information 

Consider a physical system “X” that stores information.  

Assume X can be one of the finite number of classical states ( ∑ ) at each 

moment. 

 

Example:  

o if X is a bit,  ∑ = {0, 1} → binary alphabet 

o if X is six-sided dice, ∑ = {0, 1, 2, 3, 4, 5, 6} 

o if X is switch of an electric fan, ∑ = {high, medium, low, off} 

 

Pr( x = 0) → probabilistic state → probability where it is in classical state “0” 

 Succinct way to represent is “column vector”: 

 

Example: if Pr(x=0) = 3/4 and Pr(x=1) = 1/4, then, column vector is: 

(
3
4⁄

1
4⁄
)
← 𝑒𝑛𝑡𝑟𝑦 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 0

← 𝑒𝑛𝑡𝑟𝑦 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 1
 

 

Probability vector: 

• Entries are nonnegative real numbers and sum of all entries are “1” 

 

Some Superposition Quantum States 

|+〉 =
1

√2
(|0〉 + |1⟩) 

|−〉 =
1

√2
(|0〉 − |1⟩) 

|i〉 =
1

√2
(|0〉 + i|1⟩) 

|−i〉 =
1

√2
(|0〉 − i|1⟩) 

 

Dirac Notation 

|∑| = Number of elements in set ∑ 

 

 We denote by | ɑ 〉  (called ket) the column vector having a 1 in the entry corresponding to ɑ ∈ ∑ with 0 for all other entries. 

 

Example: if ∑ = {0, 1}, then: 
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|0〉  =  (
1

0
)      𝑎𝑛𝑑    |1〉  =  (

0

1
) 

 

|0〉 and |1〉 are orthogonal1, normalized (magnitude = length of arrow is 1) and linearly independent (one cannot be described 

in terms of another). 

 

 
Note: This is a popular basis called computational basis. Also, other popular basis is  |+〉 and |-〉 where: 

|+〉 =
1

√2
(
1
1
) =

1

√2
(|0〉 + |1〉)          |−〉 =

1

√2
(
1
−1
) =

1

√2
(|0〉 − |1〉) 

 

❖ For probabilistic requirement, valid quantum state vectors should satisfy this: 

∑𝑎𝑖
2 = 1

𝑁−1

𝑖=0

 

 

Representation of Popular Qubits 

 

|0〉  (
1
0
) 〈0|  (1 0) 

|1〉  (
0
1
) 〈1|  (0 1) 

|+〉 
1

√2
(|0〉 + |1〉) 

1

√2
(
1
1
) 〈+| 

1

√2
(
〈0|
〈1|
) 

1

√2
(1 1) 

|-〉 
1

√2
(|0〉 − |1〉) 

1

√2
(
1
−1
) 〈-| 

1

√2
(
〈0|
−〈1|

) 
1

√2
(1 −1) 

|i〉 
1

√2
(|0〉 + 𝑖|1〉) 

1

√2
(
1
𝑖
) 〈i| 

1

√2
(
〈0|
−i〈1|

) 
1

√2
(1 −𝑖) 

|-i〉 
1

√2
(|0〉 − 𝑖|1〉) 

1

√2
(
1
−𝑖
) 〈-i| 

1

√2
(
〈0|
i〈1|
) 

1

√2
(1 𝑖) 

 

 

 For 2 qubits: 

|𝑎〉 = (
𝑎0
𝑎1
)     𝑎𝑛𝑑   |𝑏〉 = (

𝑏0
𝑏1
)   ⇒   |𝑎𝑏〉 = (

𝑎0𝑏0
𝑎0𝑏1
𝑎1𝑏0
𝑎1𝑏1

) 

 

Here |ab〉 is product combined state of |a〉 and |b〉 where |a〉 represents the qubit on the left and  |b〉 is the one on the 

right. From probability perspective: 

 
1 Orthogonal: geometrically perpendicular to each other 
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𝑝|a⟩(|0〉) = 𝑝|ab⟩(|00〉 + 𝑝|ab⟩(|01〉) = (𝑎0𝑏0)
2 + (𝑎0𝑏1)

2 = 𝑎0
2𝑏0
2 + 𝑎0

2𝑏1
2 = (𝑏0

2 + 𝑏1
2)𝑎0

2 = 𝑎0
2 

 

Example: 

|+ +〉 =

(

 
 
 
 
 
 

1

√2

1

√2
1

√2

1

√2
1

√2

1

√2
1

√2

1

√2)

 
 
 
 
 
 

=
1

2
(

1
1
1
1

) =
1

2
(|00〉 + |01〉 + |10〉 + |11〉) 

 

 

Samely: 

|− +〉 =
1

2
(|00〉 + |01〉 − |10〉 − |11〉) 

 

Others: 

|+ +〉 =
1

2
(

1
1
1
1

)      |− −〉 =
1

2
(

1
−1
−1
1

)      |+ −〉 =
1

2
(

1
−1
1
−1

)      |− +〉 = |−〉|+〉 =
1

2
(

1
1
−1
−1

) 

 

 

• We denote by 〈ɑ|  (called bra)  the row vector having a 1 in the entry corresponding to ɑ ∈ ∑ with 0 for all other entries. 

 

Example: If ∑ = {0, 1} , then :   〈0| = (1  0)       〈1| = (0  1)  

 

∴  〈 ɑ |  +  | ɑ 〉  ≡ 〈ɑ||ɑ〉  ≡ 〈ɑ|ɑ〉→  bra-ket       Its meaning may be expressed as follows: “How much does the second 

vector contain the first vector” (If result is 1, it means both vector is completely same and if result is zero then vectors 

are completely opposite) 

 

Example: 

|0〉 = (
1
0
)      𝑎𝑛𝑑 〈0| = (1 0)    ⇒   〈0|0〉 = 1 

 

|1〉 = (
0
1
)      𝑎𝑛𝑑 〈1| = (0 1)    ⇒   〈1|1〉 = 0 

 

In the same way: 〈+|+〉 = 〈-|-〉 = 〈i|i〉 = 〈-i|-i〉 = 1 

and also 〈0|1〉 = 〈1|0〉 = 0 

∴ If first vector is same as second vector in bra-ket, the result is 1 otherwise result is 0. 

 

For |ψ〉 = α|0〉 + β|1〉: 

** 〈0|ψ〉 means “the amplitude of zero state of qubit ψ” = α〈0|0〉 + β〈0|1〉 = α 

** |〈0|ψ〉|2 means “probability of zero state of qubit ψ” = |α|2 

 

 

Vectors of this form are called “standard basis vectors”. It means, every vector can be expressed uniquely as a linear 

combination of standard basis vectors. 
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∴ |0〉 and |1〉 are orthonormal2 basis. 

 

Example: 

(
3
4⁄

1
4⁄
) =  

3

4
 |0〉 + 

1

4
 |1〉 

 

• To get 〈ɑ| from |ɑ〉, we need to take the conjugate transpose:  

〈𝜓| = |𝜓⟩ϯ = (
𝛼
𝛽)

ϯ

= (𝛼ϯ 𝛽ϯ) 

 

In other words, if |ψ〉 = α|0〉 + β|1〉  ⇒   〈ψ| = α*〈0| + β*〈1| 

where  α = x + iy  ⇒ α† = α* = x - iy 

 

• For U|ψ〉 where U is a quantum gate:  (𝑈|𝜓〉)† = 〈𝜓|𝑈† 𝑤ℎ𝑒𝑟𝑒 𝑈† ≡ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 

It means: 

𝑈 = (
𝑎 𝑐
𝑏 𝑑

)   ⇒   𝑈† = (
𝑎∗ 𝑏∗

𝑐∗ 𝑑∗
) 

 

|𝜓〉 = (
𝛼
𝛽) = 𝛼|0

〉 + 𝛽|1〉    ⇒    (|𝜓〉)† = 〈𝜓| = (𝛼∗ 𝛽∗) 

 

𝑈|𝜓〉 = (𝑎𝛼 + 𝑐𝛽)|0〉 + (𝑏𝛼 + 𝑑𝛽)|1〉 

 

(𝑈|𝜓〉)† = (𝛼∗𝑎∗ + 𝛽∗𝑐∗ 𝛼∗𝑏∗ + 𝛽∗𝑑∗) 

 

** Gates are applied to “cat” from left and they are applied to “bra” from right. 

 

** For any quantum gate U,   𝑈𝑈† = 𝑈†𝑈 = 𝟙      ∴     ∀𝑈 ≡ 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 

 

** We know that, for any matrix M, 𝑀.𝑀−1𝑀−1𝑀 = 𝟙    ⇒     𝑈† = 𝑈−1 

 

** When we apply the inverse of gate(s), we get the same state before gate-application: 

 

 
 

∴ All quantum gate operations are reversable! 

 

 

Measuring Probabilistic States 

If we measure a system X while it is in some probabilistic state, we see a classical state chosen at random according to the 

probabilities.  

Suppose we see a classical state ɑ ∈ ∑ . So: 

 

Pr ( X = ɑ) = 1 

 

This probabilistic state is represented by the vector | ɑ 〉  

 

 
2 two vectors in an inner product space are orthonormal if they are orthogonal (or perpendicular along a line) unit vectors. 
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For Pr(x=0) = 3/4 and Pr(x=1) = 1/4, measuring X reveals a transition, chosen at random: 

 
3

4
 |0〉 + 

1

4
 |1〉 

  

To find the probability of measuring a state |ψ〉 in the state |x〉 we do: 

 

𝑝(|𝑥〉) = |〈𝑥|𝜓〉|2 

 

Example: If we look at the state |q0〉, we can see the probability of measuring |0〉 is indeed 0,5: (handled in py#2) 

|𝑞0〉 =
1

√2
|0〉 +

𝑖

√2
|1〉 

 

〈0|𝑞0〉 =
1

√2
〈0|0〉 +

𝑖

√2
〈1|1〉 =

1

√2
1 +

𝑖

√2
0 =

1

√2
 

〈0|𝑞0〉
2 =

1

2
 

 

The Implications of this Rule 

1. Normalisation: The rule shows us that amplitudes are related to probabilities. We need the magnitude of the state vector 

to be 1  ⇒  〈ψ|ψ〉 = 1  

Thus, for generalized state of a qubit |ψ〉 = α|0〉 + β|1〉  (where α, β ∈ ℂ: complex numbers)  ⇒   |α|2 + |β|2 = 1 

 

2. Alternative Measurement: The measurement rule gives us the probability p(|x〉) that a state |ψ〉 is measured as |x〉. 

Nowhere does it tell us that |x〉  can only be either |0〉 or |1〉. 

 

3. Global Phase: We know that measuring the state |1〉 will give us the output 1 with certainty. On the other hand, 

[
0
𝑖
] = 𝑖|1〉 

But, since: 

|〈x|(i|1〉)|2 = |i〈x|1〉|2 = |〈x|1〉|2 

 

⇒ This effect is completely independent of the measured state |x〉 

 

Example: 𝑒𝑖𝜃 is a global phase. Since |𝑒𝑖𝜃𝛼|
2
= |𝑒𝑖𝜃|

2
|𝛼|2 = |𝛼|2 ⇒  |𝜓〉 ≡ 𝑒𝑖𝜃|𝜓〉 ∴ Multiplying a qubit state with a global 

phase does nothing in qubit’s physical state. 

 

4. The Observer Effect: The act of measuring changes the state of qubits (collapsing the state of the qubit). 

 

|𝑞〉 = [
𝛼
𝛽]

𝑚𝑒𝑎𝑠𝑢𝑟𝑒 |0⟩
→         |𝑞〉 = |0〉 = [

1
0
] 

To achieve truly quantum computation, we must allow the qubits to explore more complex states. Measurements are therefore 

only used when we need to extract an output. This means that we often place all the measurements at the end of our quantum 

circuit. 

 

x-measurement: Simply perform an h gate immediately before measurement. 
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z-measurement: The standard form of measurement, which is done with just a measure gate. 

 
 

 Hadamard gate reverses the roles of the z measurement and x measurement. This leads to a simple effect in the 

visualization: it swaps the two lines. 

 

 

The Uncertainty Principle: “for certain pairs of attributes of a quantum system, it is impossible to know both with certainty.” 

(Werner Heisenberg) 

 

We could choose to encode a bit of information in a qubit.  

• We can do it the normal way, using the |0〉 and |1〉 states to encode the bit values 0 and 1 and using the z 

measurement to read it out.  

• Or we could do it an alternative way, using the |+〉 and |-〉 states to encode the bit values and the x measurement for 

read out.  

But the uncertainty principle makes sure that we can't do both at once. 

 

The Bloch Sphere 

For generalized state of a qubit |q〉 = α|0〉 + β|1〉 , we can only measure the difference in phase between the states |0〉  and 

|1〉. Let’s confine α, β to the real numbers and add a term to tell us the relative phase between them: 

 

|q〉 = α|0〉 + eiΦβ|1〉     α, β, Φ ∈ ℝ 

 

According to the normalization in qubit state, √𝛼2 + 𝛽2 = 1 and using trigonometric identity √𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 = 1, we can 

obtain 𝛼 =
cos𝜃

2
   𝛽 =

sin𝜃

2
  . From this, we can describe the qubit state as: 

 

|𝑞〉 = cos
𝜃

2
 |0〉 + 𝑒𝑖𝜙𝑆𝑖𝑛 

𝜃

2
|1〉        𝜃, 𝜙 ∈  ℝ 

 

Now, we can plot any single qubit state on the surface of a sphere, known as the Bloch sphere. A qubit in the state |+〉 (where 

ϴ=π/2 and  Φ=0)  

 

from qiskit_textbook.widgets import plot_bloch_vector_spherical 

coords = [pi/2,0,1] # [Theta, Phi, Radius] 

plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates 
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 State vector holds the amplitudes for the two states our qubit can be in. The Bloch vector is a visualization tool that maps 

the 2D, complex state vector onto real, 3D space. 

 For n qubits, there are 2n possible outcomes (states) and we can store these amplitudes in lists of length 2n3 which we 

call state vectors (these vectors describe the state of qubits). 

 

State vector for two qubits: 

|𝜓〉 = 𝑐00|00〉 + 𝑐01|01〉 + 𝑐10|10〉 + 𝑐11|11〉 = (

𝑐00
𝑐01
𝑐10
𝑐11

) 

 

Example: This is an example of a state vector for a quantum computer with two qubits: 

|𝑥〉 =

(

 
 

1
√2
⁄

1
√2
⁄

0
0 )

 
 
= (

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 00
𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 01
𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 10
𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 11

) = √2(

1
1
0
0

) 

and if we define: 

|00〉 = (

1
0
0
0

)        |01〉 = (

0
1
0
0

) 

then: 

|𝑥〉 =
1

√2
(|00〉 + |01〉) 

 

 For n qubits, there are 2n+1 transition amplitudes. 

 

Example: The following matrix shows the transition amplitudes for CNOT operation: 

 

𝐶𝑁𝑂𝑇 = (

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

) 

 

 

Coordinate System Transformation for Qubit Vectors 

|ψ〉  = α |0〉 + β |1〉         and      |α|2 + |β|2 = 1        ⇒         rα2 + rβ2 = 1  

 = 𝑟𝛼𝑒
𝑖𝜓𝛼|0〉 + 𝑟𝑏𝑒

𝑖𝜓𝑏|1〉 

 = 𝑒𝑖𝜓𝛼   (𝑟𝛼|0〉 + 𝑟𝑏𝑒
𝑖(𝜓𝑏−𝜓𝛼)|1〉) = (𝑟𝛼|0〉 + 𝑟𝑏𝑒

𝑖(𝜓𝑏−𝜓𝛼)|1〉)  since 𝑒𝑖𝜓𝛼  is a global phase and it is 1. 

 

Since cos2 ϴ/2+ sin2 ϴ/2=1  ⇒  𝑤𝑒 𝑐𝑎𝑛 𝑟𝑒𝑝𝑙𝑎𝑐𝑒  𝑟𝛼 = cos
𝜃

2
     𝑎𝑛𝑑   𝑟𝛽 = sin

𝜃

2
    𝑎𝑙𝑠𝑜    𝜓𝛽 − 𝜓𝛼 = 𝜙  

Finally: 

|ψ〉  = cos
𝜃

2
|0〉 + 𝑒𝑖𝜙 sin

𝜃

2
|1〉 ⇒ spherical coordinate system representation 

 

Inverse transformation: 

For z=x + iy: 

 
3 To fully describe the state of qubits, we may need to keep track of up to 2n amplitudes. But, if we begin in a product state, it 
is possible to keep track of everything with a very manageable 2n amplitudes, rather than the full 2n. Since anything that is not 
a product state is an entangled state, we find that entanglement is a necessary ingredient of any quantum advantage. 
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|𝑟| = √𝑥2 + 𝑦2 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥
) 

 
 

 

 

 

For |ψ〉 = α |0〉 + β |1〉, we can transform the vector into spherical coordinates as: 

|ψ〉 = cos (ϴ/2) |0〉 + eiΦ sin (ϴ/2) |1〉 

 

with transform from cartesian coordinates to spherical coordinates and find the 

location of qubit in Bloch sphere: 

 x = sin ϴ cos Φ 

 y = sin ϴ sin Φ 

 z = cos ϴ 

 

Example: |𝜓〉 =
1

√2
(|0〉 + |1〉)    ⇒  𝜃 =

𝜋

2
  𝑎𝑛𝑑 𝜙 = 0  (𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑥 = 1, 𝑦 =

𝑧 = 0 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐ℎ 𝑠𝑝ℎ𝑒𝑟𝑒) 

 

Example: To find the position of this qubit in Bloch sphere, find ϴ and Φ values. (Find the spherical coordinate system 

representation of this qubit) 

|𝜓〉 =
3 + 𝑖√3

4
|0〉 −

1

2
|1〉 

Answer:  

For z=x + iy,  |𝑟| = √𝑥2 + 𝑦2 ⇒ for our qubit |𝑟| =
√9+3

4
=
√12

4
=
2√3

4
=
√3

2
 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥
) ⇒  𝜃 = arctan (

√3
4
⁄

3
4⁄
) = 𝑎𝑟𝑐𝑡𝑎𝑛 (

1

√3
) =

𝜋

6
≡ 30° 

⇒ |𝜓〉 =
√3

2
𝑒𝑖
𝜋
6|0〉 −

1

2
|1〉 = 𝑒𝑖

𝜋
6 (
√3

2
|0〉 − 𝑒−𝑖

𝜋
6
1

2
|1〉) =

√3

2
|0〉 − 𝑒−𝑖

𝜋
6
1

2
|1〉 =

√3

2
|0〉 + 𝑒𝑖𝜋𝑒−𝑖

𝜋
6
1

2
|1〉

=
√3

2
|0〉 + 𝑒𝑖

5𝜋
6
1

2
|1〉 ⇒  𝜃 =

𝜋

3
  𝑎𝑛𝑑 𝜙 =

5𝜋

6
 

 

∴  |𝜓〉 = 𝑐𝑜𝑠 (
𝜋
3⁄

2
) |0〉 + 𝑒𝑖

5𝜋
6 𝑠𝑖𝑛 (

𝜋
3⁄

2
) |1〉 
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Some complex number conversions:   

 𝑒𝑖𝜋 = −1 (  Euler’s Formula4:  𝑒𝑖𝑥 = cos𝑥 + 𝑖 sin 𝑥  ) 

 𝑒𝑖
𝜋

2 = 𝑖 

 𝑒𝑖
𝜋

4 = √𝑖 

 |𝑒𝑖𝜃|
2
= 1 

 

Deterministic5 Operations 

Every function  f : ∑ ⟶∑ describes a deterministic operation that performs the classical state ɑ into f(ɑ) for each ɑ ∈ ∑ 

Given any function f : ∑ ⟶∑ , there is a unique matrix M satisfying: 

M |ɑ〉 = |f(ɑ)〉  (for every ɑ ∈ ∑ ) 

𝑀(𝑏, 𝑎) =  {
1   𝑏 = 𝑓(𝑎)
0   𝑏 ≠ 𝑓(𝑎)

 

( b: row, a: column ) 

 

The action of this operation is described by matrix-vector multiplication: 

v ⟼ M v 

⟼ map sign 

 

Example: 

 
 

𝑀1 = (
1 1
0 0

)   𝑀2 = (
1 0
0 1

)   𝑀3 = (
0 1
1 0

)   𝑀4 = (
0 0
1 1

) 

We see that: 

M1: Constant zero function 

M2: Identity function 

M3: Negate function 

M4: Constant one function 

 

• The Dirac notation can be used for arbitrary vectors: Any name can be used in place of a classical state. Ket’s are column 

vectors and bra’s are row vectors. 

 

Example: The notation |𝜓〉 is commonly used to refer to an arbitrary vector: 

 

|𝜓〉 =  
1+2𝑖

3
|0〉 −

2

3
 |1⟩ = (

1+2𝑖

3

−
2

3

)  

|ψ〉 is linear combination of |0〉  and |1〉 which is called “superposition” 

 

〈𝜓| =  
1 − 2𝑖

3
〈0| −

2

3
〈1| = (

1 − 2𝑖

3
−
2

3
) 

 

where |ψ〉 is qubit’s (ψ) state vector. For any column vector |𝜓〉, the row vector 〈𝜓| is the conjugate transpose6 of |𝜓〉 

 
4 https://en.wikipedia.org/wiki/Euler%27s_formula  
5 Deterministic: There is no randomness or uncertainty involved. 
6 Complex Conjugate: Invert (negate) only the complex part of the number. 
Transpose: Rows become columns. 

https://en.wikipedia.org/wiki/Euler%27s_formula
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〈𝜓| =  |𝜓〉ϯ 

 

py#1: Sample Python code for: set state of a qubit and it’s measurement’s drawing 

from qiskit import QuantumCircuit, assemble, Aer 

from qiskit.visualization import plot_histogram, plot_bloch_vector 

from math import sqrt, pi 

qc = QuantumCircuit(1) 

initial_state = [0,1]   # Define initial_state as |1〉 

qc.initialize(initial_state, 0) # Apply initialisation operation to the 0th qubit 

sim = Aer.get_backend('aer_simulator')  

qc.save_statevector()   # Tell simulator to save statevector 

qobj = assemble(qc)     # Create a Qobj from the circuit for the simulator to run 

result = sim.run(qobj).result() # Do the simulation and return the result 

out_state = result.get_statevector() 

print(out_state) # Display the output state vector 

qc.measure_all() 

qc.draw() 

Output: 

Statevector([0. + 0.j, 1. + 0.j], dims=(2,)) 

 
py#2: Qubit in superposition 

from qiskit import QuantumCircuit, assemble, Aer 

from qiskit.visualization import plot_histogram, plot_bloch_vector 

from math import sqrt, pi 

 

initial_state = [1/sqrt(2), 1j/sqrt(2)]  # Define state |q_0> 

qc = QuantumCircuit(1) # Must redefine qc 

qc.initialize(initial_state, 0) # Initialize the 0th qubit in the state `initial_state` 

qc.save_statevector() # Save statevector 

qobj = assemble(qc) 

state = sim.run(qobj).result().get_statevector() # Execute the circuit 

print(state)           # Print the result 

qobj = assemble(qc) 

results = sim.run(qobj).result().get_counts() 

plot_histogram(results) 

Output: 

Statevector([0.70710678 + 0.j, 0. + 0.70710678j], dims=(2,)) 

 
Conjugate Transpose: First apply conjugate, then apply transpose. 
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Multiplying row vector to column vector: 

〈𝑎|𝑏〉 =  〈𝑎| |𝑏〉 =  {
1   𝑎 = 𝑏
0   𝑎 ≠ 𝑏

 

 

which is inner product. According to the definition, 〈1|0〉 = 〈0|1〉 = 0 and 〈0|0〉 = 〈1|1〉 = 1 

 

 

Multiplying column vector to row vector: 

Example: 

|0〉〈0|  =  (
1
0
) (1  0) =  (

1 0
0 0

) 

 

|0〉〈1|  =  (
1
0
) (0  1) =  (

0 1
0 0

) 

 

|1〉〈0|  =  (
0
1
) (1  0) =  (

0 0
1 0

) 

 

|1〉〈1|  =  (
0
1
) (0  1) =  (

0 0
0 1

) 

 

∴  In general,  |a〉〈b| has a 1 in the (a, b) entry and 0 for all other entries. 

 

 

Result: 

𝑀 = ∑|𝑓(𝑏)〉 〈𝑏|

𝑏 ∈ Σ

 

 

𝑀|𝑎〉 =  ∑|𝑓(𝑏)〉 〈𝑏|𝑎〉 = |𝑓(𝑎)〉

𝑏 ∈ Σ

 

 

 

Probabilistic Operations 

Probabilistic operations are classical operations that may introduce randomness or uncertainty. 

 

Example : 

• If the classical state is 0, then do nothing. 

• Otherwise flip the bit with probability ½. 

Corresponding matrix is: 
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(
1 ½
0 ½

) =  1 2⁄  (
1 1
0 0

) + 1 2⁄  (
1 0
0 1

) 

 

We see that this function is also equal to ½ probability of “constant zero function” and ½ probability of “identity function”. 

 

Probabilistic operations are described by stochastic matrices: 

• All entries are nonnegative real numbers, 

• The entries in every column sum to 1. 

 

• If we want to find the probability of two unrelated events occurring, we multiply their probabilities together. 

 

Example :  

For qubits |a〉 and |b〉 with two-qubit states |ba〉,  what is the probability that the qubit on the right comes out 0 ? 

 

|𝑎〉 = (
𝑎0
𝑎1
)         |𝑏〉 = (

𝑏0
𝑏1
)     𝑎𝑛𝑑    |𝑎𝑏〉 = (

𝑎0𝑏0
𝑎0𝑏1
𝑎1𝑏0
𝑎1𝑏1

) 

 

where a0 is the amplitude of state 0 and so on. So, probability of state |a〉 as |0〉 : 

 

𝑃|𝑎〉(|0〉) =  𝑃|𝑏𝑎〉(|00〉) + 𝑃|𝑏𝑎〉(|10〉) = (𝑏0𝑎0)
2 + (𝑏1𝑎0)

2 = 𝑏0
2𝑎0
2 + 𝑏1

2𝑎0
2 = (𝑏0

2 + 𝑏1
2)𝑎0

2 = 𝑎0
2 

 

**(𝑏0𝑎0)
2 is the probability of measuring 00 (This is the amplitude of the state |00〉 squared) 

**  𝑏0
2 + 𝑏1

2 = 1 because this is the probability of qubit b “being 1” and “being 0”. Sum of them gives the total probability.  Total 

probability of a qubit is always 1. 

 

 

Composing Operations 

Suppose X is a system and M1, …. MN are stochastic matrices representing probabilistic operations on X. Applying the first 

probabilistic operation to the probability vector v, then applying second probabilistic operation to the result yields this vector: 

 

𝑀2. (𝑀1. 𝑣) =  (𝑀2.𝑀1). 𝑣 

 

The probabilistic operation obtained by composing the first and second probabilistic operation is represented by the matrix 

product M2M1. 

 

Composing the probabilistic operations represented by the matrices M1, … MN (in that order) is represented by this matrix 

product: 

 

𝑀𝑛…… . .𝑀1 

 

Important: Matrix multiplication is NOT commutative ! 

 

Quantum Information 

A quantum state of a system is represented by a column vector whose indices are placed in correspondence with the classical 

state of that system: 

• The entries are complex numbers, 

• The sum of the absolute values squared of the entries ( = Euclidean norm) must equal 1. 

 

The Euclidean Norm (‖𝑣‖) for vectors with complex number entries (α) is defined as: 
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𝑣 =  (

𝛼1
⋮
𝛼𝑛
) ⇒ ‖𝑣‖  = √∑|𝛼𝑘|2

𝑛

𝑘=1

 

 

Quantum state vectors are therefore unit vectors with respect to this norm. 

 

Examples of qubit (quantum bit) states: 

• Standard basis states: |0〉 and |1〉 

• Plus / minus states: 

|+〉 =  
1

√2
|0〉 +

1

√2
|1〉   𝑎𝑛𝑑   |−〉 =  

1

√2
|0〉 −

1

√2
|1〉 

 

• A state without a special name: 
1 + 2𝑖

3
|0〉 −

2

3
|1〉 

 

Measuring Quantum States 

Measurements provide a mechanism for extracting classical information from quantum systems. 

 

Standard basis measurements: 

• The possible outcomes are the classical states. 

• The probability for each classical state to be outcome is the absolute value squared of the corresponding quantum 

state vector entry. 

 

Example: Measuring the quantum state for qubit in + state: 

|+〉 =
1

√2
 |0〉 + 

1

√2
 |1〉 

yields an outcome as follows: 

Pr(𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑖𝑠 0) = |
1

√2
|
2

=
1

2
    Pr(𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑖𝑠 1) = |

1

√2
|
2

=
1

2
 

 

 

Example: Measuring this qubit’s quantum state: 
1 + 2𝑖

3
|0〉 − 

2

3
 |1〉 

yields an outcome as follows: 

Pr(𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑖𝑠 0) = |
1 + 2𝑖

3
|
2

=
5

9
    Pr(𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑖𝑠 1) = |−

2

3
|
2

=
4

9
 

 

Measuring a system changes its quantum state: If we measure a system when it’s in a quantum state, then the state will change 

as a result of having performed that measurement. ∴ if we obtain the classical state ɑ, the new quantum state becomes |ɑ〉. 

For the state in the previous example, if we measure (with probability 5/9), we obtain the outcome “zero”, in which case, the 

state transitions to |0〉.  (It is referred to as “collapse of the quantum state”) 

 

Example: Measuring this qubit’s quantum state: 

|𝜓〉 =
1

√2
|00〉 +

1

2
|01〉 +

√3

4
|10〉 +

1

4
|11〉 
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𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 |00〉 = |
1

√2
|
2

=
1

2
 

If we only measure the left qubit: 

 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 |0〉 𝑓𝑜𝑟 𝑙𝑒𝑓𝑡 𝑞𝑢𝑏𝑖𝑡 = |
1

√2
|
2

+ |
1

2
|
2

=
3

4
 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 |1〉 𝑓𝑜𝑟 𝑙𝑒𝑓𝑡 𝑞𝑢𝑏𝑖𝑡 = |
√3

4
|

2

+ |
1

4
|
2

=
1

4
 

 

If we measure left qubit as “0”, the qubit pair collapses to this new position: 

|𝜓〉  
𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑠
→       

1

√2
|00〉 +

1

2
|01〉 

 

The final state collapses to the kets where left-qubit is zero. But total probability of this new state is not one. So, we should 

normalize it: 

𝐴(|
1

√2
|
2

+ |
1

2
|
2

) = 1   ⇒     𝐴 =
2

√3
 

Then normalized new state is: 

|𝜓〉 =  
1

√3
(√2|00〉 + |01〉) 

 

 

Unitary Operations 

The set of allowable operations (gates) that can be performed on a quantum state is different than it is for classical information. 

Operations on quantum state vectors are represented by unitary matrices. (Operations on probabilistic states are represented 

by stochastic matrices) 

To preserve the total probability in all cases, our operations need to be reversible. This means we can perform our quantum 

gates backwards to 'undo' them and be left with the state we started with. We say matrices with this property are unitary. 

 

Definition: A square matrix U having complex number entries is unitary if it satisfies the equalities: 

 

𝑈ϯ𝑈 = 𝟙 = 𝑈𝑈ϯ  (for square matrices) 

* For non-square matrix, one of the equations above is valid and enough. 

 

where Uϯ is the conjugate transpose of U and 𝟙 is the identity matrix. Both equalities are equivalent to 𝑈−1 = 𝑈ϯ 

 

The condition that an n x n matrix U is unitary is equivalent to: 

 

‖𝑈𝑣‖ = ‖𝑣‖ 

 

For every n-dimensional column vector v with complex number entries. 

 

If v is a quantum state vector, then Uv is also a quantum state vector.  

 

Operations should be designed by matrices, transformations act linearly on vectors representing states.  

 

Conditions of being a Quantum Gate 

• A quantum gate U: 

o should be linear, means, 𝑈(𝛼|0〉 + 𝛽|1〉) = 𝛼𝑈|0〉 + 𝛽𝑈|1〉 
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o should give an output such that |𝛼′2| + |𝛽′2| = 1 

o should be reversible, means, if you re-apply gate to the output vector of it, the original values should be 

obtained. 

 

Qubit Unitary Operations 
Pauli Operations: Pauli operations are ones represented by the Pauli matrices given below: 

 

𝟙 =  (
1 0
0 1

)    𝜎𝑥 = (
0 1
1 0

)    𝜎𝑦 = (
0 −𝑖
𝑖 0

)    𝜎𝑧 = (
1 0
0 −1

)     

 

Common alternative notations: X = σx ,    Y = σy   and   Z = σz 

The operation σx is called a bit flip (or a NOT operation), and the σz operation is called a phase flip: 

 

σx |0〉= |1〉  σz |0〉= |0〉 

σx |1〉= |0〉  σz |1〉= -|1〉 

 
X gate is represented by “.cx(in, in)” in Quiskit. 

Z gate is represented by “.cz(in, in)” in Quiskit. 

 

• X*X = Y*Y = Z*Z = 𝟙 

 

from qiskit import QuantumCircuit, assemble, Aer 

from math import pi, sqrt 

from qiskit.visualization import plot_bloch_multivector, plot_histogram 

sim = Aer.get_backend('aer_simulator') 

# Let's do an X-gate on a |0〉 qubit 

qc = QuantumCircuit(1) 

qc.x(0) 

# Let's see the result 

qc.save_statevector() 

qobj = assemble(qc) 

state = sim.run(qobj).result().get_statevector() 

plot_bloch_multivector(state) 
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Hadamard Operation: This gate allows us to move away from the poles of the Bloch sphere and create a superposition of  

|0〉 and |1〉. It has the matrix: 

𝐻 =

(

 
 

1

√2

1

√2
1

√2

1

−√2)

 
 
=
1

√2
(
1 1
1 −1

) 

 

Checking that H is unitary is a straightforward calculation: 

 

(

 
 

1

√2

1

√2
1

√2

1

−√2)

 
 

ϯ

(

 
 

1

√2

1

√2
1

√2

1

−√2)

 
 
=

(

 
 

1

√2

1

√2
1

√2

1

−√2)

 
 

(

 
 

1

√2

1

√2
1

√2

1

−√2)

 
 
= (

1

2
+
1

2

1

2
−
1

2
1

2
−
1

2

1

2
+
1

2

) = (
1 0
0 1

) 

 

H|0〉=|+〉 H|1〉=|-〉 H|+〉=|0〉 H|-〉=|1〉 

 

This can be thought of as a rotation around the Bloch vector [1,0,1] (the line between the x & z-axis) 

Hadamard gate is represented by “.h(in, in)” in Quiskit. 

 

 

Example: We can show that: X = HZH 

𝐻𝑍𝐻 =
1

√2
[
1 1
1 −1

] . [
1 0
0 −1

] .
1

√2
[
1 1
1 −1

] = [
0 1
1 0

] = 𝑋 

 

 
 

Phase Operations ( p-gate ): The P-gate performs a rotation of ϴ around the Z-axis direction. 

 

𝑃𝜃 = (
1 0
0 𝑒𝑖𝜃

) 

for any choice of a real number θ. 

 

The operations: 

𝑺 =  𝑃𝜋
2
= (
1 0
0 𝑖

)           𝑻 =  𝑃𝜋
4
= (

1 0

0
1 + 𝑖

√2

)        𝑃0 =  𝟙        𝑃𝜋 =  𝜎𝑧 

are important examples. 
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Example: 

𝑇|0〉 =  |0〉    𝑎𝑛𝑑 𝑇|1〉 =  
1 + 𝑖

√2
|1〉     𝑤ℎ𝑒𝑟𝑒 𝑇 = (

1 0

0
1 + 𝑖

√2

) 

 

𝑇|+〉 =  
1

√2
|0〉 +

1 + 𝑖

2
 |1〉 

 

𝐻𝑇|+〉 =  
1

√2
|+〉 + 

1 + 𝑖

2
 |−〉 = (

1

2
+
1 + 𝑖

2√2
) |0〉 + (

1

2
−
1 + 𝑖

2√2
) |1〉 

 

Gates Summary 

 
 

 
 

 
 

X Gate provides 180° rotation  

in X axis 

X|0〉=|1〉 

X|1〉=|0〉 

X|+〉=|+〉 

X|-〉=-|-〉 

X|i〉=|-i〉 

X|-i〉=|i〉 

Y Gate provides 180° rotation  

in Y axis 

Y|0〉= i|1〉 

Y|1〉= -i|0〉 

Y|+〉= -i |-〉 

Y|-〉= i |+〉 

Y|i〉= |i〉 

Y|-i〉= -|-i〉 

Z Gate provides 180° rotation  

in Z axis 

Z|0〉= i|1〉 

Z|1〉= -i|0〉 

Z|+〉=|-〉 

Z|-〉=|+〉 

Z|i〉=|-i〉 

Z|-i〉=|i〉 

 

Some phase comments: 

** The Z gate applied to a single qubit has the effect of doing nothing to |0〉 and giving a phase of -1 to the state |1〉.  

** For the Z gate, it only has any effect at all when both qubits are in state |1〉. 

 

 
 

  

S (phase) Gate  

X|0〉=|0〉 

T  (phase) Gate  

T|0〉= i|1〉 

H Gate  

H|0〉= |+〉 
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X|1〉= i |1〉 

X|+〉=|i〉 

X|-〉= - |i〉 

X|i〉= 

X|-i〉= 

T|1〉= 𝑒𝑖
𝜋
4⁄ |1〉 

T|+〉= 
1

√2
(|0〉 + √𝑖|1〉) 

T|-〉=  

T|i〉=  

T|-i〉=  

H|1〉= |-〉 

H|+〉=|0〉 

H|-〉=|1〉 

H|i〉= 

H|-i〉= 

 

• T2 = S 

• S2 = Z 

• H2 = 𝟙 

 

Representation of Popular Gates 

𝑃𝑎𝑢𝑙𝑖 𝑔𝑎𝑡𝑒𝑠 ∶         𝑋 = [
0 1
1 0

]         𝑌 = [
0 −𝑖
𝑖 0

]         𝑍 = [
1 0
0 −1

] 

 

𝐻 =
1

√2
[
1 1
1 −1

]         𝑇 = [
1 0

0 𝑒𝑖
𝜋
4
]         𝑆 = [

1 0
0 𝑖

] = 𝑇2 

 

 

 𝑋 = 𝐻𝑍𝐻 = 𝐻𝑇4𝐻 

 
 

𝑌 = 𝑆𝑋𝑍𝑆 = 𝑇2𝐻𝑇4𝐻𝑇6 

 
 

𝑍 = 𝐻𝑋𝐻 = 𝑆2 = 𝑇4 

 
 

 

Theorem: Every single-qubit gate can be defined as a rotation over an axis in Bloch gate. 

 

Proof: Let’s define: 

�̂� = 𝑛𝑥𝑥 + 𝑛𝑦�̂� + 𝑛𝑧�̂�   𝑤ℎ𝑒𝑟𝑒 𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 = 1 

A general definition of a qubit is as follows:  

𝑈 = 𝑒𝑖𝛾 [cos (
𝜃

2
) 𝐼 − 𝑖 𝑠𝑖𝑛 (

𝜃

2
) (𝑛𝑥𝑋 + 𝑛𝑦𝑌 + 𝑛𝑧𝑍)] 

 

where ϴ is rotation angle, X, Y, Z are known gates and nx, ny, nz are the coefficients that determines the rotation 

axis. 



May 2023 

Dr. Mustafa AFYONLUOGLU 19 

 

 

Let’s see that Hadamard gate can be represented by U for: 

 

�̂� =
1

√2
𝑥 +

1

√2
�̂�        𝑎𝑛𝑑         𝜃 = 𝜋 

 

When we replace the variables into U, we get: 

 

𝑈 = −𝑖𝑒𝑖𝛾
1

√2
(𝑋 + 𝑍) 

 

Now, let’s apply generic qubit state to U and check if the result is same as Hadamard gate or not:  

 

𝑈|0〉 = −𝑖𝑒𝑖𝛾
1

√2
(𝑋 + 𝑍)|0〉 = −𝑖𝑒𝑖𝛾

1

√2
(|1〉 + |0⟩) = −𝑖𝑒𝑖𝛾|+〉 

(where we know that X|0〉=|1〉 and Z|0〉=|0〉) 

 

𝑈|1〉 = −𝑖𝑒𝑖𝛾
1

√2
(𝑋 + 𝑍)|1〉 = −𝑖𝑒𝑖𝛾

1

√2
(|0〉 − |1⟩) = −𝑖𝑒𝑖𝛾|−〉 

 

when we get 𝛾 = 𝜋 2⁄     ⇒  −𝑖𝑒𝑖𝛾 = −𝑖. 𝑖 = (−1)(−1) = 1, and we see that U ≡ H 

 

In the similar way, we can show that U≡S . We know that S gate rotates a qubit over Z axis π/2 degree. So: 

 

�̂� = �̂�         𝜃 =
𝜋

2
     𝑎𝑛𝑑    𝛾 =

𝜋

4
 

 

Let’s replace the variables over U, we get: 

𝑈 = 𝑒𝑖
𝜋
4
1

√2
(𝐼 + 𝑖𝑍) 

Then, apply this gate to generic qubit state: 

𝑈|0〉 = 𝑒𝑖
𝜋
4
1

√2
(1 − 𝑖)|0〉 = |0〉          𝑤ℎ𝑒𝑟𝑒 

1 − 𝑖

√2
= 𝑒−𝑖

𝜋
4  

 

𝑈|1〉 = 𝑒𝑖
𝜋
4
1

√2
(1 + 𝑖)|1〉 = 𝑒𝑖

𝜋
2|1〉 = 𝑖|1〉 

So, we see that U ≡ S 

 

 

Toffoli Gate: It is basic AND operation. It requires 2 inputs and it is represented by “.ccx(in, in, out)” in Quiskit. 

 

CNOT Gate: The CNOT (controlled-NOT) gate acts on two qubits, which are known as the 'control' and the 'target'. If the 

control is in state |0〉, the cx does nothing. If the control is in state |1〉, the cx performs an X (not) on the target qubit. 
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CNOT gate is represented by “.cx(in, in)” in Quiskit. 

 

Compositions of qubit Unitary Operations 

Compositions of unitary operations are represented by matrix multiplication (similar to the probabilistic setting). 

 

𝑅 = 𝐻𝑆𝐻 =

(

 
 

1

√2

1

√2
1

√2

1

−√2)

 
 
(
1 0
0 𝑖

)

(

 
 

1

√2

1

√2
1

√2

1

−√2)

 
 
= (

1+ 𝑖

2

1 − 𝑖

2
1 − 𝑖

2

1 + 𝑖

2

) 

(The unitary matrices are closed under multiplication) 

 

𝑅2 = (

1+ 𝑖

2

1 − 𝑖

2
1 − 𝑖

2

1 + 𝑖

2

)

2

= (
1 0
0 1

) = 𝑁𝑂𝑇 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑏𝑖𝑡 𝑓𝑙𝑖𝑝 = 𝑋 = 𝜎𝑥 

 

∴ R is square root of NOT operation. (𝑋 = (𝐻𝑆𝐻)2) 
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Classical States 

Classical state of a system is a configuration of a system that can be recognized and described unambiguously 

without any uncertainty or error. 

 

Suppose that we have two systems: 

• X is a system having classical state set ∑. 

• Y is a system having classical state set Γ. 

 

Imagine that, X and Y are placed side-by-side with X on the left and Y on the right, and viewed together as if they 

form a single system. We denote this new compound system by (X, Y) or XY. 

 

Classical state of XY is the cartesian product: 

∑ 𝑥 𝛤 =  {(𝑎, 𝑏): 𝑎 ∈  ∑  𝑎𝑛𝑑 𝑏 ∈ 𝛤} 

 

Example: If ∑ = {0, 1} and Γ =  {a, b, c}, then: 

 

∑ x Γ = { (0, a), (0, b), (0, c), (1, a), (1, b), (1, c) } 

 

This description generalizes to more than two systems in a natural way: 

Suppose X1, . . . , Xn are systems having classical state sets ∑1, . . . ∑n respectively. The classical state set of n-tuple 

(X1, . . . Xn), viewed as a single compound system, is the Cartesian product: 

∑1, . . . ∑n = { (a1, . . . an) : (a1 ∈ ∑1, . . . an ∈ ∑n } 

 

Example: if ∑1 = ∑2 = ∑3 = {0, 1} , then the classical state set of (X1, X2, X3 ) is: 

 

∑1 x ∑2 x ∑3 = {(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0,), (1,0,1), (1,1,0), (1,1,1)  } 

 

An n-tuple (a1, . . . an) may also be written as a string a1 . . . an . (drop parentheses and comma) 

 

Example: Suppose X1, . . . X10 are bits, so this classical state sets are all the same: 

 

∑1 = ∑2  = . . . = ∑10 = {0,1} 

 

The classical state set of (X1, . . . X10) is the Cartesian product: 

 

∑1 x ∑2  x . . . x ∑10 = {0,1}10 

 

Written as strings, these classical states look like this (1.024 lines): 

0000000000 
0000000001 
0000000010 

⋮ 
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1111111111 
 

Ordering Cartesian Product State Sets 

Convention: Cartesian products of classical state sets are ordered lexicographically (i.e., dictionary ordering): 

• We assume the individual classical state sets are already ordered. 

• Significance decreases from left to right. 

 

Example: The Cartesian product {1,2,3} x {0,1} is ordered like this: 

 

(1,0), (1,1), (2,0), (2,1), (3,0), (3,1) 

 

When n-tuples written as strings and ordered in this way, we observe familiar patterns, such as {0,1} x {0,1} being 

ordered as 00, 01, 10, 11. 

 

Probabilistic States 

Probabilistic states of compound systems associate probabilities with the Cartesian product of the classical state 

sets of the individual systems. 

 

Example: This is a probabilistic state of a pair of bits (X,Y): 

Pr((X,Y) = (0,0)) = ½ 

Pr((X,Y) = (0,1)) = 0 

Pr((X,Y) = (1,0)) = 0 

Pr((X,Y) = (1,1)) = ½ 

 

(

½
0
0
½

)  

←   𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑠𝑡𝑎𝑡𝑒 00
←   𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑠𝑡𝑎𝑡𝑒 01
←   𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑠𝑡𝑎𝑡𝑒 10
←   𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑠𝑡𝑎𝑡𝑒 11

   

 

Definition: For a given probabilistic state of (X, Y), we say that X and Y are independent7, if: 

 

Pr((X, Y) = (a, b)) = Pr (X = a) Pr (Y = b) 

 

for all  a ∈ ∑    and    b ∈ Γ.8 

 

Suppose that a probabilistic state of (X, Y) is expressed as a vector: 

 

|𝜋〉 = ∑ |𝑎𝑏〉

(𝑎,𝑏)∈∑𝑥𝛤

 

 

The systems X and Y are independent if there exist probability vectors: 

|∅〉 = ∑𝑞𝑎|𝑎〉      𝑎𝑛𝑑      |𝜓

𝑎∈Σ

〉 =∑𝑟𝑏|𝑏〉

𝑏∈Γ

 

 
7 Statistical Independence = Absence or correlation 
8 It says that, the probability of X to be in any one classical state and the probability of Y to be in some other classical state have absolutely 
nothing to do with one another. 
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Such that pab = qarb for all a∈∑ and b∈Γ. ( |Φ〉 and |ψ〉 probabilistic states of X and Y ) 

Example : The probabilistic state of a pair of bits (X, Y) represented by the vector 

 

|𝜋〉 =
1

6
|00〉 +

1

12
|01〉 +

1

2
|10〉 +

1

4
|11〉 

 

is one in which X and Y are independent. The required condition is true for these probabilistic vectors: 

 

|∅〉 =
1

4
|0〉 +

3

4
|1〉   𝑎𝑛𝑑    |𝜓〉 =

2

3
|0〉 +

1

3
|1〉 

(The probability for each possible setting for the two bits is given by the product of the corresponding probabilities for the 

individual bits) 

 

Example : For the probabilistic state 

 

1

2
|00〉 +

1

2
|11〉 

 

of two bits (X, Y), we have that X and Y are not independent. ≡ The bits are correlated. 

If they were, we would have numbers q0, q1, r0, r1 such that: 

 

q0r0 = ½     q0r1 = 0     q1r0 = 0     q1r1 = ½ 

 

But q0r1 is zero, then either q0=0 or r0=0 (or both), contradicting either the first or last equality. 

(q0r1 cannot be 0 because at least q0 or r1 should be zero. If any of them is zero, q0r0 or q1r1 cannot be ½ . So, these four conditions 

cannot be obtained ∴ The probabilistic state is not independent) 

 

Tensor Products of Vectors 

Definition: The tensor product of two vectors (Φ and ψ) where Σ and Γ are any choice of classical state sets: 

 

|Φ〉 =∑𝛼𝑎|𝑎〉

𝑎∈Σ

      𝑎𝑛𝑑      |Ψ〉 =∑𝛽𝑏|𝑏〉

𝑏∈Γ

 

 

is the vector: 

|Φ〉 ⊗ |Ψ〉 = |Φ⊗Ψ〉 = |Φ〉|Ψ〉 = |ΦΨ〉 = |Φ,Ψ〉 = ∑ 𝛼𝑎𝛽𝑏|𝑎𝑏〉
(𝑎,𝑏)∈Σ𝑥Γ

 

 

Equivalently, the vector |π〉=|Φ〉 ⊗ |ψ〉 is defined by this condition: 

 

〈ab|π〉 = 〈a|Φ〉 〈b|ψ〉  (for all a∈∑ and b∈Γ) 

 

Example: 

|𝜙〉 =
1

4
|0〉 +

3

4
|1〉    𝑎𝑛𝑑    |𝜓〉 =

2

3
|0〉 +

1

3
|1〉 

 

|Φ〉 ⊗ |Ψ〉 =
1

6
|00〉 +

1

12
|01〉 +

1

2
|10〉 +

1

4
|11〉 
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• Following out convention for ordering the elements of Cartesian product sets, we obtain this specification for the tensor 

product of two column vectors: 

(

𝛼1
⋮
𝛼𝑚
)⊗ (

𝛽1
⋮
𝛽𝑘

) =

(

 
 
 
 
 
 
 

𝛼1𝛽1
⋮

𝛼1𝛽𝑘
𝛼1𝛽2
⋮

𝛼1𝛽𝑘
⋮

𝛼𝑚𝛽1
⋮

𝛼𝑚𝛽𝑘)

 
 
 
 
 
 
 

 

 

Important Properties of Tensor Products 

** The tensor product of two vector is bilinear. 

   1. Linearity in the first argument: 

(|Φ1〉 + |Φ2〉) ⊗ |Ψ〉 = |Φ1〉 ⊗ |Ψ〉 + |Φ2〉 ⊗ |Ψ〉 

 

( 𝛼 |Φ〉 ) ⊗ |Ψ〉 = 𝛼( |Φ〉 ⊗ |Ψ〉 ) 

   2. Linearity in the second argument: 

|Φ〉 ⊗ (|Ψ1〉 + |Ψ2〉) = |Φ〉⊗ |Ψ1〉 + |Φ〉⊗ |Ψ2〉 

 

 |Φ〉 ⊗ ( 𝛼|Ψ〉) = 𝛼( |Φ〉 ⊗ |Ψ〉 ) 

 

Tensor Products of Vectors 

 

If we define |ψ〉 =  |Φ1〉 ⊗ |Φ2〉 ⊗⋯⊗ |Φ𝑛〉  𝑡ℎ𝑒𝑛  〈𝑎1⋯𝑎𝑛|ψ〉 =  〈𝑎1|ϕ〉 ⊗⋯〈𝑎𝑛|ϕ〉  

 

• The tensor product of three or more vector is multilinear. 

 

Measurements of Probabilistic States 
 

Measurement of compound systems work in the same way as measurements of single systems – provided that all of the 

systems are measured. 

 

Example: Suppose that two bits (X, Y) are in the probabilistic state 
1

2
|00〉 +

1

2
|11〉 . Measuring both bits yields the outcome 00 

with probability ½ and the outcome with the probability ½ . Because measuring all of the systems is equivalent to measuring 

the entire compound system. 

If we measure just X but don’t measure Y, then it means there is still could exist some uncertainty about the state of Y and this 

uncertainty is reflected by this formula: 

Pr(𝑌 = 𝑏 | 𝑋 = 𝑎) =
Pr((𝑋, 𝑌 = (𝑎, 𝑏))

Pr(𝑋 = 𝑎)
 

 

Example: Suppose (X, Y) is in the probabilistic state 
1

12
|00〉 +

1

4
|01〉 +

1

3
|10〉 +

1

3
|11〉, we write this vector as follows: 

 

|0〉⊗ (
1

12
|0〉 +

1

4
|1〉) + |1〉 ⊗ (

1

3
|0〉 +

1

3
|1〉) 

 

Case 1: The measurement outcome is zero: 

𝑃𝑟(𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑖𝑠 𝑧𝑒𝑟𝑜) =
1

12
+
1

4
=
1

3
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Conditioned on this outcome, the probabilistic state of Y becomes: 

1
12
|0〉 +

1
4
|1〉

1
3

=
1

4
|0〉 +

3

4
|1〉 

 

Case 2: The measurement outcome is one: 

𝑃𝑟(𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑖𝑠 𝑜𝑛𝑒) =
1

3
+
1

3
=
2

3
 

 

Conditioned on this outcome, the probabilistic state of Y becomes: 

1
3
|0〉 +

1
3
|1〉

2
3

=
1

2
|0〉 +

1

2
|1〉 

 

The same method can be used when Y is measured, rather than X. Suppose that (X, Y) is in some arbitrary probabilistic state: 

 

∑ 𝑝𝑎𝑏|𝑎𝑏〉

𝑎,𝑏 ∈ Σ𝑥Γ

= ∑ 𝑝𝑎𝑏|𝑎〉

𝑎,𝑏 ∈ Σ𝑥Γ

⊗ |𝑏〉 =∑(∑ 𝑝𝑎𝑏|𝑎〉

𝑎 ∈ Σ

)

𝑏∈Γ

⊗ |𝑏〉 

 

1.  The probability that a measurement of Y yields an outcome a ∈ Σ is: 

 

𝑃𝑟(𝑌 = 𝑏) = ∑ 𝑝𝑎𝑏
𝑎 ∈ Σ

 

 

2. Conditioned on the outcome b ∈ Γ, the probabilistic state of X becomes 

 

∑ 𝑝𝑎𝑏|𝑎〉𝑎 ∈ Σ

∑ 𝑝𝑐,𝑏𝑐 ∈ Σ
 

 

Operations on Probabilistic States 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Prof. John Watrous9 – IBM Quantum, Technical Director of Education 
https://www.youtube.com/playlist?list=PLOFEBzvs-VvqKKMXX4vbi4EB1uaErFMSO  

  

 
9 Waterloo Üniversitesi'ndeki David R. Cheriton Bilgisayar Bilimleri Okulu'nda bilgisayar bilimi profesörü, Kuantum Hesaplama 

Enstitüsü'nün bir üyesi, Çevre Teorik Fizik Enstitüsü'nün bağlı bir üyesi ve Kanada Üyesidir. 

https://www.youtube.com/playlist?list=PLOFEBzvs-VvqKKMXX4vbi4EB1uaErFMSO
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Simulators 

 
Bloch sphere simulators: 

** https://attilakun.net/bloch/ 

** https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/blochsphere/blochsphere.html  

** https://bits-and-electrons.github.io/bloch-sphere-

simulator/#{%22blochSphereStateProperties%22:{%22theta%22:%220.0000%22,%22phi%22:%2290.0000%22},%22customG

atesProperties%22:{},%22lambdaGatesProperties%22:{%22polarAngle%22:%220%22,%22azimuthAngle%22:%220%22}}  

 

Quantum FlyTrap Virtual Lab - Simulator: https://lab.quantumflytrap.com/lab?mode=waves  

Quantum Circuit Simulator: https://thequantumlaend.de/quantum-circuit-designer/  

Quantum Circuit Designer: https://algassert.com/quirk  

 

Other: 

https://learn.microsoft.com/en-us/azure/quantum/concepts-the-qubit  

 

Designing a new gate in Quirk Simulator Web Page 

Let: 

𝑈 =

(

 
 
√2 − 𝑖

2

1

2

−
1

2

√2 + 𝑖

2 )

 
 

 

 

If we want to see this gate in Quirk simulation, do the followings: 

- Enter Quirk web site (https://algassert.com/quirk). 

- Click “Make Gate” button on top of the screen. 

- Enter the coefficients of the gate into the “From Matrix” screen as follows: 

o (sqrt(2)-i)/2, 1/2 

o -1/2, (sqrt(2)+i)/2 

- You will see the amplitude of each cell of the gate matrix and the gate rotation axis on the bloch sphere, in the bottom of 

“From Matrix”. 

- Give a name to the gate from “circuit symbol” text box. 

- Click “Create Matrix Gate” button. 

- You will see the new gate in the right most side of toolbox-2 at the bottom of the screen. 

 

Grover's Quantum Search Algorithm 

 

When searching any database, Grover's algorithm grows with the square root of the number of inputs, which for 

unstructured search (search on unordered data) is a quadratic improvement over the best classical algorithm. 

 

Each extra variable (bit) in our SAT problem doubles the number of possible solutions (i.e. entries to our database), 

so the search space grows exponentially with the number of bits. Since random guessing grows linearly with N, the 

running time will grow by roughly 2n. 

https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbXJnVVVBNmJsOWt6RDBPd01uX0gwNnFnUEtXUXxBQ3Jtc0tsMDdJUXBDVG5Salh3cU9fSElDQ3hFVk9menZIR2VjWTdURkY1RnNLU3RMOUxkcnZfZU9URjVOdHBJS0podVNmODVjY1ZVajRZY2p2Vl83X3FnUHdURllwVDQ5QXFGNjN3WkFrdWY0bS1lVjNyYTZpQQ&q=https%3A%2F%2Fattilakun.net%2Fbloch%2F&v=I-PW7b8mV2U
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/blochsphere/blochsphere.html
https://bits-and-electrons.github.io/bloch-sphere-simulator/#{%22blochSphereStateProperties%22:{%22theta%22:%220.0000%22,%22phi%22:%2290.0000%22},%22customGatesProperties%22:{},%22lambdaGatesProperties%22:{%22polarAngle%22:%220%22,%22azimuthAngle%22:%220%22}}
https://bits-and-electrons.github.io/bloch-sphere-simulator/#{%22blochSphereStateProperties%22:{%22theta%22:%220.0000%22,%22phi%22:%2290.0000%22},%22customGatesProperties%22:{},%22lambdaGatesProperties%22:{%22polarAngle%22:%220%22,%22azimuthAngle%22:%220%22}}
https://bits-and-electrons.github.io/bloch-sphere-simulator/#{%22blochSphereStateProperties%22:{%22theta%22:%220.0000%22,%22phi%22:%2290.0000%22},%22customGatesProperties%22:{},%22lambdaGatesProperties%22:{%22polarAngle%22:%220%22,%22azimuthAngle%22:%220%22}}
https://lab.quantumflytrap.com/lab?mode=waves
https://thequantumlaend.de/quantum-circuit-designer/
https://algassert.com/quirk
https://learn.microsoft.com/en-us/azure/quantum/concepts-the-qubit
https://algassert.com/quirk
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SAT (Boolean satisfiability problem) 

 

SAT is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. The 

satisfiability problem considers the case in which N boolean variables are used to form a Boolean expression 

involving negation (NOT), conjunction (AND) and disjunction (OR). The problem is to determine whether there is 

any assignment of values to the Boolean variables which makes the formula true. For simplicity, it is common to 

require that the boolean expression be written in conjunction normal form or "CNF". 

 

A formula in CNF consists of: 

• clauses joined by AND; 

• each clause, in turn, consists of literals joined by OR; 

• each literal is either the name of a variable (a positive literal), or the name of a variable preceded by NOT 

(a negative literal). 

 

Structure of CNF File:10 

- The file may begin with comment lines. The first character of each comment line must be a lower case 

letter "c". 

- The comment lines are followed by the "problem" line. This begins with a lower case "p" followed by a 

space, followed by the problem type, which for CNF files is "cnf", followed by the number of variables 

followed by the number of clauses. 

- The remainder of the file contains lines defining the clauses, one by one. 

- A clause is defined by listing the index of each positive literal, and the negative index of each negative literal. 

Indices are 1-based, and for obvious reasons the index 0 is not allowed. 

- The definition of a clause is terminated by a final value of "0". 

Example: 
c example DIMACS-CNF 3-SAT 

p cnf 3 5 

-1 -2 -3 0 

 
10 https://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html  

https://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html
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1 -2 3 0 

1 2 -3 0 

1 -2 -3 0 

-1 2 3 0 

 

According to this CNF file, the line “1 -2 3 0” means: if bit1 is 1, bit2 is 0 and bit3 is 1 then this clause is satisfied. 

 

For tis CNF file, corresponding quantum circuit which is created by Quiskit’s circuit library is as follows: 

 

from qiskit.circuit.library import PhaseOracle 
oracle = PhaseOracle.from_dimacs_file('examples/3sat.dimacs') 
oracle.draw() 

 

 

 
 

To use this circuit with Grover's algorithm, we want the oracle to change the phase of the output state by 180° 

(i.e. multiply by -1) if the state is a solution. 

 

𝑈𝑜𝑟𝑎𝑎𝑐𝑙𝑒|𝑥〉 = {
|𝑥〉 𝑖𝑓 𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
−|𝑥〉 𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 

 

For example, the only solutions to this problem are 000, 011, and 101, so the circuit above has this matrix: 

𝑈𝑜𝑟𝑎𝑐𝑙𝑒 =

[
 
 
 
 
 
 
 
−𝟏 0 0 0 0 0 0 0
0 𝟏 0 0 0 0 0 0
0 0 𝟏 0 0 0 0 0
0 0 0 −𝟏 0 0 0 0
0 0 0 0 𝟏 0 0 0
0 0 0 0 0 −𝟏 0 0
0 0 0 0 0 0 𝟏 0
0 0 0 0 0 0 0 𝟏]

 
 
 
 
 
 
 

 

Then, let’s look at the steps of Grover’s algorithm: 

- Step_1: Create an equal superposition of every possible input to the oracle by applying H-gate to initial state 

|0〉 of each qubit. We’ll call this equal superposition state |s〉. 

- Step_2: The next step is to run the oracle circuit (Uoracle) on these qubits. 

- Step_3: The final step is to run a circuit called the 'diffusion operator' or 'diffuser' (Us) on the qubits. 
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- We then need to repeat steps 2 & 3 a few times depending on the size of the circuit. For difficult problems (if 

there is only one solution), we need to repeat these steps √𝑁 times. 

o For difficult problems, there are a lot of possible inputs and only a small number of solutions. In this case 

|s〉 is much closed to |⌧〉 (all solution states) rather than |√〉 (all other states). Let say, the angle 

between |s〉 and |⌧〉 is ϴ at the beginning.  

o After each iteration (running step 1 and step 2), |s〉 reaches towards |√〉 by 2ϴ 

o We see that 𝑆𝑖𝑛(𝜃) =
1

√𝑁
 

o Since for small ϴ, we want to rotate |s〉 around 90 degrees to reach |√〉. So, we need √𝑁 iterations for 

the solution. 

 

 

from qiskit import QuantumCircuit 
init = QuantumCircuit(3) 
init.h([0,1,2]) 
# steps 2 & 3 of Grover's algorithm 
from qiskit.circuit.library import GroverOperator 
grover_operator = GroverOperator(oracle) 
qc = init.compose(grover_operator) 
qc.measure_all() 
qc.draw() 

 

 
 

Then we can get the results from simulator: 

 

# Simulate the circuit 
from qiskit import Aer, transpile 
sim = Aer.get_backend('aer_simulator') 
t_qc = transpile(qc, sim) 
counts = sim.run(t_qc).result().get_counts() 
 
# plot the results 
from qiskit.visualization import plot_histogram 
plot_histogram(counts) 
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We can see that system gives high probabilities on three solutions of this SAT problem. 

 

Circuits for Grover's algorithm 

 

 

from qiskit import QuantumCircuit 
oracle = QuantumCircuit(2) 
oracle.cz(0,1)  # invert phase of |11> 
def display_unitary(qc, prefix=""): 
    """Simulates a simple circuit and display its matrix representation. 
    Args: 
        qc (QuantumCircuit): The circuit to compile to a unitary matrix 
        prefix (str): Optional LaTeX to be displayed before the matrix 
    Returns: 
        None (displays matrix as side effect) 
    """ 
    from qiskit import Aer 
    from qiskit.visualization import array_to_latex 
    sim = Aer.get_backend('aer_simulator') 
    # Next, we'll create a copy of the circuit and work on 
    # that so we don't change anything as a side effect 
    qc = qc.copy() 
    # Tell the simulator to save the unitary matrix of this circuit 
    qc.save_unitary() 
    unitary = sim.run(qc).result().get_unitary() 
    display(array_to_latex(unitary, prefix=prefix)) 
 
display_unitary(oracle, "U_\\text{oracle}=") 

 

𝑈𝑜𝑟𝑎𝑐𝑙𝑒 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

] 
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Creating the diffuser: 

• Do the transformation |s〉 → |11〉 (i.e., x-gate) 

• Reflect around |11〉 (i.e., the cz-gate) 

• Do the transformation |11〉 → |s〉 

 

diffuser = QuantumCircuit(2) 
diffuser.h([0, 1]) 
diffuser.x([0,1]) 
diffuser.cz(0,1) 
diffuser.x([0,1]) 
diffuser.h([0,1]) 
diffuser.draw() 

 

 

 
• Now perform oracle and perform diffuser to get Grover’s algorithm: 

 

grover = QuantumCircuit(2) 
grover.h([0,1])  # initialise |s> 
grover = grover.compose(oracle) 
grover = grover.compose(diffuser) 
grover.measure_all() 
grover.draw() 

 

 
 

 

 

And finally, simulate the result: 

 

from qiskit import Aer 
sim = Aer.get_backend('aer_simulator') 
sim.run(grover).result().get_counts() 

 

  RESULT: {'11': 1024}  (100% probability of measuring |11〉 ) 
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** Same problem solution with Quirk11: 

 
 

Schöning’s Algorithm 

 

Like random guessing, Schöning’s algorithm chooses an input at random and checks if it works. If it does not work, 

algorithm picks an unsatisfied clause and toggles a bit in the string to satisfy that clause. On average it's beneficial 

to keep toggling bits in this manner a few times. If the initial guess was close enough, there’s a fair chance we’ll 

stumble upon the correct solution. If not, then after some number of steps, the computer starts again with a new 

completely random guess. Also, if you create a circuit that carries out the bit-toggling part of Schöning's algorithm, 

you can use this as the oracle and use Grover's algorithm to find the best "initial guess". 

 

 
 

 

 

 

 

 

 

  

 
11 
https://algassert.com/quirk#circuit={%22cols%22:[[%22Z%22,%22Z%22],[%22H%22,%22H%22],[%22X%22,%22X%22],[%22Z
%22,%22Z%22],[%22X%22,%22X%22],[%22H%22,%22H%22]]}  

https://algassert.com/quirk#circuit={%22cols%22:[[%22Z%22,%22Z%22],[%22H%22,%22H%22],[%22X%22,%22X%22],[%22Z%22,%22Z%22],[%22X%22,%22X%22],[%22H%22,%22H%22]]}
https://algassert.com/quirk#circuit={%22cols%22:[[%22Z%22,%22Z%22],[%22H%22,%22H%22],[%22X%22,%22X%22],[%22Z%22,%22Z%22],[%22X%22,%22X%22],[%22H%22,%22H%22]]}
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Qiskit Global Summer School – 202212 

Lesson Notes 

 

 
Magnetism of silver atoms – result: spin up or spin down. 

 

 
 

 
 

 

 
anti aligned atoms 

 

 
12 Olivia Lanes (IBM), Maria Violaris (IBM ), Jeffry Cohn (IBM Research Staff Member) 
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Measuring the double slit  

(if you watch which slit the electrons go through, you’ll see particle pattern, if you don’t watch, then electrons 

will interfere with itself and go through both slits at the same time [superposition principle of quantum 

mechanics], then you’ll see wave pattern) 

 
 

 

Superposition: Some combination of |+〉 and|-〉       This state can be written as: ψ=  |+〉 ∓ |-〉 

Popular superpositions and position of quit in bloch sphere for this veector: 

 

|+〉 =
1

√2
(|0〉 + |1〉)      (𝑥 = 1) 

 

|−〉 =
1

√2
(|0〉 − |1〉)      (𝑥 = −1) 

 

|𝑖〉 =
1

√2
(|0〉 + 𝑖|1〉)      (𝑦 = 1) 

 

|−𝑖〉 =
1

√2
(|0〉 − 𝑖|1〉)      (𝑦 = −1) 

 
 

∴ 
“Quantum mechanics forces us to the brink of implausibility … but not beyond” 

 

• Single particles can exist in state of superposition, which combines multiple measurable states with certain probabilities 

associated with them. 

• Single particles can interfere with themselves due to this nature. 

• Upon measurement, only these definite states can be observed and the outcome is probabilistic, not determinate. 
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For quantum computer that is ready for quantum simulation: 

• We should have quantum bits. 

• They should be initialized into a well known states. 

• These states will have relatively-long coherence times (it will stay in the state we initialized in, and not just decay into the 

ground statebefore we can run quantum algorithms and quantum gates on it). 

• We need a universal set of quantum gates and a qubit-specific measurement capability (we can individually measure every 

single qubit in the system without perturbing the other qubits as well). 

 

Superposition: Ψ =
1

√2
(|0〉 + |1〉): |+〉   and |-〉 

 

Entanglement: To create entanglement, we need to apply multi-qubit gates, commonly cx (CNOT) or cz. 

Ψ =
1

√2
(|01〉 + |10〉) 

 

|01〉 is another way of writing a tensor product  |0〉 ⊗ |1〉 

 

Example:  

𝑆𝑖𝑛𝑐𝑒 |𝜓〉 = 𝑐00|00〉 + 𝑐01|01〉 + 𝑐10|10〉 + 𝑐11|11〉 = (

𝑐00
𝑐01
𝑐10
𝑐11

) 

|+0〉 = (
1

√2
(
1
1
))(

1
0
) =

1

√2
(

1
0
1
0

) =
1

√2
(|00〉 + |10〉) 

 

|+0〉 is a two qubit state vector that actually describes a pair of single qubit states:  |+〉 and |0〉. We called |+0〉 product 

state13 because the state of |+0〉 belongs to first (on the left qubit which is +). Because as we see in the state vector: 

• |00〉: Both qubits are in the state |0〉. 

• |10〉: The qubit states are |1〉 (on the left) and  |0〉 (on the right). 

 

|+0〉 =
1

√2
(|00〉 + |10〉) 

 

 

 
13 In product state, each qubit can be independently described by a single qubit state with two amplitudes. 
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Complex Numbers Recap 

   
 

𝑧 = 𝑥 + 𝑖𝑦          𝑒𝑖𝜃 = cos𝜃 + 𝑖 sin 𝜃     |𝑒𝑖𝜃| = 1      (𝐸𝑢𝑙𝑒𝑟′𝑠 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

 

𝑧 = 𝑟𝑒𝑖𝜃 = 𝑟 cos𝜃 + 𝑖𝑟 sin 𝜃 

 

𝑥2 + 𝑦2 = 𝑟2(𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃) = 𝑟2 

 

Complex Conjugates & Hermitian Conjugates 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒: 𝑧∗ = 𝑧̅ = 𝑥 − 𝑖𝑦 = 𝑟𝑒−𝑖𝜃 

 

𝑁𝑜𝑟𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑑: |𝑧2| = 𝑧∗𝑧 = 𝑟2 

 

|𝜓〉 = (
𝑎
𝑏
) ⇒ |𝜓〉ϯ = 〈𝜓| = (𝑎, 𝑏) 

 

 

𝐻𝑒𝑟𝑚𝑖𝑡𝑖𝑎𝑛 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒: 𝐻 = [
𝑎 𝑐
𝑏 𝑑

] ⇒ 𝐻ϯ = [
𝑎∗ 𝑏∗

𝑐∗ 𝑑∗
] 

 

* All quantum computations and quantum states live in a vector space we call the Hilbert space, where 𝐻 = 𝐶2
𝑛

 

 

Orthogonality & Inner Products 

 

〈α|β〉 = 〈β|α〉* = a1*b1+ a2*b2+ . . . + an*bn  : Inner Product 

 

In the other words: 

𝑓𝑜𝑟 |𝜓〉 = (
𝛼
𝛽)      𝑎𝑛𝑑     |𝜙〉 = (

𝛾
𝛿
)     ⇒     〈𝜓|𝜙〉 = 𝛼∗𝛾 + 𝛽∗𝛿 

 

• 〈ψ|ψ〉 = 1 

• 〈ψ|Φ〉 = 〈Φ|ψ〉* 

• If 〈ψ|Φ〉 = 0 ⇒ ψ and Φ are orthogonal each other. (completely opposite physical reality like heads & tails) 

 

Example:  

|𝑎〉 =
3 + 𝑖√3

4
|0〉 +

1

2
|1〉        |𝑏〉 =

1

4
|0〉 +

√15

2
|1〉      => 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 〈𝑎|𝑏〉 

 

Answer: 

〈𝑎|𝑏〉 = (
3 − 𝑖√3

4

1

2
)(

1
4⁄

√15
2
⁄
) =

3 − 𝑖√3

16
+
√15

8
=  
3 + 2√15 − 𝑖√3

16
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Orthogonal & Orthonormal 

 

 

▪ The two orthogonal z-basis states of a qubit are |0〉 and |1〉 
▪ The two orthogonal x-basis states of a qubit are |+〉 and |-〉 
▪ The two orthogonal y-basis states of a qubit are|i〉 and |-i〉 

Example: The qubit state |𝜓〉 =
√3

4
|0〉 +

1

2
|1〉 can be expressed in terms of |+〉 and |-〉 as follows: 

|0〉 =
1

√2
(|+〉 + |−〉)     𝑎𝑛𝑑    |1〉 =

1

√2
(|+〉 − |−〉) 

 

|𝜓〉 =
√3

4
|0〉 +

1

2
|1〉 =

√3

4

1

√2
(|+〉 + |−〉) +

1

2

1

√2
(|+〉 − |−〉) =

1

√2
(
√3 + 2

4
|+〉 +

√3 − 2

4
|−〉) 

 

 

• For two base qubit state Φ1 and Φ2: if 〈Φ1| Φ1〉 = 1 and 〈Φ1| Φ2〉 = 0, then they are said to be “orthogonal” and 

“orthonormal”. 

• Any qubit state can be expressed as :  |ψ〉 = 〈0|ψ〉 |0〉 + 〈1|ψ〉 |1〉 = 〈+|ψ〉 |+〉 + 〈-|ψ〉 |-〉 

 

Example: The qubit state |𝜓〉 =
√3

2
|0〉 +

1

2
|1〉 , find the |+〉 and |-〉 base representations and calculate α’ (amplitude of |+〉) 

 

Answer: For |ψ〉 = α’ |+〉 + β’ |-〉,  α’ = 〈+|ψ〉. 

α′ = 〈+|ψ〉 =
1

√2
(〈0| + 〈1|)(

√3

2
|0〉 +

1

2
|1〉) =

√3

2√2
+
1

2√2
=
√6 + √2

4
 

 

Example:  

|𝑎〉 = 𝑐𝑜𝑠 (
𝜃

2
) |0〉 + 𝑒𝑖𝜙𝑠𝑖𝑛 (

𝜃

2
) |1〉 

 

Find |b〉 such that |a〉 and |b〉 are orthonormal. 

 

Answer: 

For this antipod requests, 

ϴ →π – ϴ  

Φ → π + Φ 

 

So: 

|𝑏〉 = 𝑐𝑜𝑠 (
𝜋 − 𝜃

2
) |0〉 + 𝑒𝑖(𝜋+𝜙)𝑠𝑖𝑛 (

𝜋 − 𝜃

2
) |1〉 

 

Example: Find |b〉 such that it is orthonormal with the following qubit |a〉: 

|𝑎〉 =
√3

2
|0〉 +

1

2
|1〉 
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Answer: 

𝐶𝑜𝑠 (
𝜋

6
) =

√3

2
  ⇒ 𝑠𝑖𝑛 (

𝜋

6
) =

1

2
 𝑎𝑛𝑑 𝑖𝑓 𝑤𝑒 𝑢𝑠𝑒 𝜙 = 0 => 𝑢𝑠𝑒 𝜃 =

𝜋

3
 𝜙 = 0 

 

Then, after we apply antipod requests (ϴ’ →π – ϴ  and Φ’ → π + Φ) we get ϴ’=2π/3,   Φ’= π 

So: 

 

|𝑏〉 = 𝑐𝑜𝑠 (
𝜃′

2
) |0〉 + 𝑒𝑖𝜙′𝑠𝑖𝑛 (

𝜃′

2
) |1〉 =

1

2
|0〉 −

√3

2
|1〉 

 

Outer Product 

𝑓𝑜𝑟 |𝜓〉 = (
𝛼
𝛽)      𝑎𝑛𝑑     |𝜙〉 = (

𝛾
𝛿
)     ⇒     |𝜓〉〈𝜙| = (

𝛼𝛾∗ 𝛼𝛿∗

𝛽𝛾∗ 𝛽𝛿∗
) 

 

(|𝜓〉〈𝜙|)† = |𝜙〉〈𝜓| 

 

|0〉〈0| + |1〉〈1| = |00〉〈00| + |01〉〈01| + |10〉〈10| + |11〉〈11| = 𝟙    𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒏𝒆𝒔𝒔 

 

 

Tensor Product 

 
|a〉⊗|b〉= |ab〉 

|𝜓〉 = 𝑐0|00〉 + 𝑐1|01〉 + 𝑐2|10〉 + 𝑐3|11〉 = (

𝑐0
𝑐1
𝑐2
𝑐3

)     𝑎𝑛𝑑    〈𝜓| = (𝑐0
∗ 𝑐1

∗ 𝑐2
∗ 𝑐3

∗) 

 

(
𝑎1
𝑎2
) ⊗ (

𝑏1
𝑏2
) = (

𝑎1 (
𝑏1
𝑏2
)

𝑎2 (
𝑏1
𝑏2
)
) = (

𝑎1𝑏1
𝑎1𝑏2
𝑎2𝑏1
𝑎2𝑏2

) 

 

Example: 

|00〉 = |0〉⊗ |0〉 = (
1 (
1
0
)

0 (
1
0
)
) = (

1
0
0
0

) 

 

 

Example: 

Rewrite the following two qubit states as a tensor product: 
1

√6
|00〉 +

1

√6
|01〉 +

1

3
|10〉 +

1

3
|11〉 

 

Answer: 

The first vector of state comes from the first item of first states of tensor product and first item of second states, and so on.  
1

√6
|00〉  ⇒

1

√3
|0〉 .

1

√2
|0〉 

 

So, the result is: 

(
1

√3
|0〉 + √

2

3
|1〉)⊗ (

1

√2
|0〉 +

1

√2
|1〉) 
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Example: Try to separate this state into a tensor product: 

 
1

√2
|00〉 +

1

√2
|11〉 

Answer: 

It is impossible to separate these two states! Because this is an example of entangled qubits which by definition cannot be 

described by their individual parts alone (cannot be seperated). Entangled states can only be described by the sum component 

of all of the different states which make up the entangled state. So, you can not separate and measure each individual qubit 

any longer. 

 

Quantum Calculation Basics 

Amplitudes 
Amplitudes are probabilities with magnitude and phase (direction). So, the result of phase is that, when we add two amplitudes 

they can cancel each other. This behaviour is called “interference” and this is what causes the unexplained behaviour. 

Amplitude is a complex number. 

 

 
To find the probability of measuring an outcome, we square the magnitude of that outcome’s amplitude. 

 
Quantum states are normalized, and probability is calculated by the norm squared of the amplitudes: 

 

|ψ〉 =
1

√2
(|0〉 + |1〉) 

 

〈ψ|ψ〉 = (
1

√2
(〈0| + 〈1|))(

1

√2
(|0〉 + |1〉)) =

1

2
〈0|0〉 +

1

2
〈1|1〉 = 1 

 

Example: 

What is the probability of measuring |1〉 from the quantum state: 

|ψ〉 =
1

√2
(|0〉 + 𝑒

𝑖𝜋
6 |1〉) 

 

Answer: We should take complex conjugate times the original coefficient of the number in front of the one state and 

multiply those together: 

 

|
𝑒
𝑖𝜋
6

√2
|

2

=  
𝑒
𝑖𝜋
6

√2
 .
𝑒−
𝑖𝜋
6

√2
=
𝑒0

2
=
1

2
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Hint: Notice that probability of measuring |0〉 is ½ so the probability of measuring |1〉 should be ½  because total of them 

should be 1 due to normalization rules. So, 
𝑒
𝑖𝜋
6

√2
 is just a phase that does not actually end up mattering when you go to make a 

measurement. 

 

Operators 
Operators changes the state of qubits (rotate, move, spin …). Operator is symbolized as “A” with a little triangle cap (that 

means it is a quantum operator), as shown below: 

 

�̂� = �̂�ϯ    (𝐻𝑒𝑟𝑚𝑖𝑡𝑖𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 

 

𝑬𝒊𝒈𝒆𝒏𝒗𝒆𝒄𝒕𝒐𝒓 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝐴|ψ〉 = 𝑎|ψ〉 𝑤ℎ𝑒𝑟𝑒 𝑎: 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 |ψ〉: 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 (if |ψ〉 is an eigenvector of A) 

 

If |ψ〉 is not an eigenvector of A, then it has no specific associated eigenvalue of A, and the observable does not have a single 

definite value in that case. Instead, the measurements of the observable A will each yield an eigenvalue with a certain 

probability that’s related to the decomposition of |ψ〉 relative to the orthonormal eigen basis of A. 

 

Eigenvalue: Measurable and real value. 

 

Summary: 

• Quantum observables (anything you want to measure in quantum mechanics) are Hermitian operators (A Hermitian 

operator is equal to its own complex conjugate). 

• They all have real eigenvalues. 

• Eigenvectors with different eigen values are orthogonal (so they don’t overlap in the vector space). 

• Eigenvectors of an operator form a complete orthonormal basis (you can write any state that you wish as a linear 

combination of the eigenvectors associated with a specific operator). 

 

Gates 

Gates are another way of changing quantum state. We can enact on the quantum computer laboratory.  Big series of gates 

approximately be equal to a theoretical operator. A gate is a linear map of the quantum system. Linear means that, it can be 

distributed across the state even as a superposition, but it still must be equal to that total probability of one. 

 

Quantum gates are linear maps: 

U(α |0〉 + β |1〉 ) = α U|0〉 + β U|1〉 

(Total probability must remain equal to 1.) 

 

Gates are represented by matrices which can be written as a combination of the outer products: 

 

𝑋 = [
0 1
1 0

] = |0〉〈1| + |1〉〈0|  ⇒ bit-flip gate 

 

X |0〉 = |1〉 X |1〉 = |0〉 

 

𝐻 =
1

√2
[
1 1
1 −1

]  ⇒ 𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑 𝑔𝑎𝑡𝑒 

 

H|0〉=|+〉 H|1〉=|-〉 H|+〉=|0〉 H|-〉=|1〉 

 

** Gates must be unitary: 

Uϯ U=U Uϯ = I 

I |a〉 = 1 |a〉 eigenvalue can only be 1 

 



May 2023 

Dr. Mustafa AFYONLUOGLU 41 

 

𝐼1 = [1]     𝐼2 = [
1 0
0 1

]    .  .  .  𝐼𝑛 =

[
 
 
 
 
1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1]

 
 
 
 

  

 

X*X = X X* = I2 = I (because X is a quantum gate, it must be unitary) 

 

Time Evolution 
What happens if we wait to measure, and let |ψ〉 evolve naturally? (examine 3 qubit state: 110 state) 

 

 
3 states of quantum simulation: 

• Quantum state preparation: let say, |ψ〉= |110〉 

• Time evolution (let it evolve in time undisturbed) 

• Measurement (collapses the state into the classical values zero and one, we will then try to make sense of and try to 

extract information from) 

 

Real World Hardware 

 
IBM Quantum Computer Development Roadmap 
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IBM Online Quantum Computer Access Address: https://www.ibm.com/quantum  (Create IBM ID and access to qubits are free) 

 

The Josephson Junction 

 

https://www.ibm.com/quantum
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Normal reaction (potential energy) of a circuit (capacitor & inductor, harmonic oscillator14) that represents equally spaced 

energy levels (There is no way to isolate any two energy levels, they are evenly spaced) 

 

 
Josephson junction that stretches potential energy well in such a way that the rungs on the ladder no longer equidistant, so 

we can take the lowest two energy level (ground state & excited state), and isolate those with a specific pulse at that 

transition energy and call that our “qubit” 

 

15 

 

How do we measure a qubit ? 
- We never interact with it directly. 

- We couple that qubit to a 2D or 3D resonator. 

- Qubit will have an effect on that resonator. 

- We can see that effect by interacting with that resonator. (The qubit and the cavity are very far away from each other 

in terms of frequency, we’ll able to see a shift in the resonator’s frequency, depending on what state the qubit is in. For 

example, if the qubit is in the ground state or the excited state, this will affect the shift in the frequency of the resonator. 

So, by measuring the in-phase or the quadrature phase component of a microwave signal tone, it is just the same as 

 
14 A resonator is a device which exhibits resonance or resonant behavior (it naturally oscillates with greater amplitude at some frequencies, 
called resonant frequencies). An oscillator is an electronic device which produces periodic oscillating electronic signal. (they both have the 
same working procedure & generate frequency oscillation as output) 
15https://www.researchgate.net/publication/358153899_Superconducting_Radio_Frequency_Resonators_for_Quantum_Computing_A_Sh
ort_Review  

https://www.researchgate.net/publication/358153899_Superconducting_Radio_Frequency_Resonators_for_Quantum_Computing_A_Short_Review
https://www.researchgate.net/publication/358153899_Superconducting_Radio_Frequency_Resonators_for_Quantum_Computing_A_Short_Review
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measuring the imaginary and real part. We can send in a microwave tone to that resonator at that specific frequency 

and see it shift down if the qubit is in the excited state or up if it’s in the ground state.) 

 

Measurement in room temperature: 

 

- Send a pulse of microwave light from a generator down into coaxial lines of the fridge. 

- Pulse will interact with the qubit. When it leaves the resonator, it will be shifted either down or up, depending on if 

that qubit state is in “e” or “g”. 

- If you plot this microwave tone in the IQ space or the imaginary real space as a Gaussian blob, you would be able to 

see that blob shift left or right depending on if that qubit state is “e” or “g”.16 

 

 

Building Blocks of Quantum: From Linear Algebra to Quantum Circuits 

 

Quantum Gates 

X gate is 180-degree rotation on X axis in Bloch sphere. 

�̂�|+〉 =
1

√2
𝑋(|1〉 + |0〉) =

1

√2
(|0〉 + |1〉) =  |+〉 

∴ |+〉 is eigenvector of X with eigenvalue 1. 

 
16 Animation of this progress: https://youtu.be/zG1ZxZhMjpQ?list=PLOFEBzvs-Vvo5o97bYt8o1l8Ra1poMASQ&t=2174  

https://youtu.be/zG1ZxZhMjpQ?list=PLOFEBzvs-Vvo5o97bYt8o1l8Ra1poMASQ&t=2174
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�̂�|−〉 =
1

√2
𝑋(|0〉 − |1〉) = −

1

√2
(|0〉 − |1〉) =  −|−〉 

(where – is the global phase of |-〉. It is a factor that multiplies the entire state. It doesn’t affect measurement outcomes, 

because when we take the modular squared of the minus state, it’s not going to affect the measurement. But if we apply 
X to a combination of plus and minus, we obtain measurable outcome) 

∴ |-〉 is eigenvector of X with eigenvalue -1. 

 

Example: For combination of plus and minus, global phase affects measurement outcomes as follows (which is called relative 

phase): 

�̂�|0〉 =
1

√2
𝑋(|+〉 + |−〉) =

1

√2
(|+〉 − |−〉) =  |1〉 

 

Y gate is 180° rotation on Y axis in Bloch sphere. Z gate is same for Z axis. 

 

Related matrix is: (
0 −𝑖
𝑖 0

) for Y gate and (
1 0
0 −1

) for Z gate. 

 

 

General value for eigenvectors for unitary matrices is:𝑎 = 𝑒𝑖𝜓: 

𝑈|𝜓〉 = 𝑎|𝜓〉     ⇒     (𝑈|𝜓〉)ϯ = 〈𝜓|𝑈ϯ = 〈𝜓|𝑎∗ 

 

〈𝜓|𝑈ϯ𝑈|𝜓〉 = 𝑎𝑎∗⟨𝜓|𝜓⟩ = |𝑎2| = 1 

 

For generalized state of a qubit |ψ〉 = α|0〉 + β|1〉: 

 Z |ψ〉 = α|0〉 - β|1〉 

 X |ψ〉 = α|1〉 + β|0〉 

 XZ |ψ〉 = α|1〉 - β|0〉 

 

 

Hadamard gate: We can use this gate to create superposition from single qubit. (does rotation between X and Z axis) 

 

H|0〉=|+〉 H|1〉=|-〉 H|+〉=|0〉 H|-〉=|1〉 

 

 

𝐻 =  
1

√2
[
1 1
1 −1

]         𝐻 = 𝐻−1        𝐻𝐻|𝜓〉 = 𝟙|𝜓〉 = |𝜓〉 
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Phase Gate:  

𝑃 = (
1 0
0 𝑒𝑖𝜙

) 

 

 

Important Single Qubit Gates 

 
 

Bra-ket for Gates 
 

Outer product: |a〉〈b| ≡ |a X b| 

 

|0X0| =  (
1
0
) (1 0) = (

1 0
0 0

)    |0X1| =  (
0 1
0 0

)    |1X0| =  (
0 0
1 0

)    |1X1|  =  (
0 0
0 1

) 

 

So, we can express any matrix in terms of our bra-ket notation. 

𝛼|0𝑋0| + 𝛽|0𝑋1| + 𝛾|1𝑋0| + 𝛿|1𝑋1| = (
𝛼 𝛽
𝛾 𝛿

) 

 

𝛼|+𝑋 +| + 𝛽|+𝑋 −| + 𝛾|−𝑋 +| + 𝛿|−𝑋 −| = (
𝛼2 𝛽2

𝛾2 𝛿2
) 

(we are doing with the assumption that the basis of the matrix is plus minus basis) 

 

Example: 

𝑋 = (
0 1
1 0

) = |0𝑋1| + |1𝑋0|                    𝑋|0〉 = |0𝑋1||0〉 + |1𝑋0| |0〉 = |1〉 

 

 

Inner product: 〈α|β〉 = 〈β|α〉* = a1*b1+ a2*b2+ . . . + an*bn 

 

Example: the inner product of |x1〉 and |x2〉 is: 

〈𝑥1|𝑥2〉 = (𝛼0
ϯ
𝛽0
ϯ) (
𝛽0
𝛽1
) = 𝛼0

ϯ
𝛽0 + 𝛼1

ϯ
𝛽1 

 

** The inner product of a qubit state vector with itself is always 1: 

〈𝑥1|𝑥1〉 = (𝛼0
ϯ
𝛽0
ϯ) (
𝛼0
𝛼1
) = 𝛼0

ϯ
𝛼0 + 𝛼1

ϯ
𝛼1 = |𝛼0|

2 + |𝛼1|
2 = 1 

 

Example:  

〈+|−〉 = (
1

√2

1

√2
)

(

 
 

1

√2

−
1

√2)

 
 
=
1

2
−
1

2
= 0 
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Multiple Qubits 
 

Tensor product:  

|a〉⊗|b〉 = |ab〉 

 

𝑖𝑓 |𝑎〉 = (
𝑎1
𝑎2
)  and |b〉 = (

𝑏1
𝑏2
) , then |𝑎〉 ⊗ |𝑏〉 = (

𝑎1 (
𝑏1
𝑏2
)

𝑎2 (
𝑏1
𝑏2
)
) = (

𝑎1𝑏1
𝑎1𝑏2
𝑎2𝑏1
𝑎2𝑏2

) : 𝑠𝑡𝑎𝑡𝑒𝑠 𝑜𝑓 𝑏𝑜𝑡ℎ 𝑞𝑢𝑏𝑖𝑡𝑠 

(A⊗B)( |a〉⊗|b〉) = A|a〉⊗B|b〉 

Example: 

(X ⊗ Z) ( |01〉 ) = X |0〉 Z |1〉 = |1〉 (-1) = - |1〉 

 

Example: 

(X ⊗ Z) ( |0+〉 ) = X |0〉 Z |+〉 = |1〉 |-〉 = |1-〉 

 

Example: For qubits |x〉 = α0 |0〉 + α1 |1〉  and |y〉 = β0 |0〉 + β1 |1〉: 

 

|x〉⊗|y〉  = (α0 |0〉 + α1 |1〉) ⊗ (β0 |0〉 + β1 |1〉) 

  =  α0 β0 |0〉⊗|0〉 + α0 β1 |0〉⊗|1〉 + α1 β0 |1〉⊗|0〉 + α1 β1 |1〉⊗|1〉 

  = α0 β0 |00〉 + α0 β1 |01〉 + α1 β0 |10〉 + α1 β1 |11〉 

 

Definition:  

𝑓𝑜𝑟       |𝑎〉 = ∑𝛼𝑗|𝑎𝑗〉

𝑗

       𝑎𝑛𝑑         |𝑏〉 =∑𝛽𝑘|𝑏𝑘〉

𝑘

     𝑤𝑒 ℎ𝑎𝑣𝑒 ∶ 

 

|𝑎〉 ⊗ |𝑏〉 = ∑∑𝛼𝑗𝛽𝑘(|𝑎𝑗〉 ⊗ |𝑏𝑘〉)

𝑘𝑗

=∑∑𝛼𝑗𝛽𝑘(|𝑎𝑗𝑏𝑘〉)

𝑘𝑗

 

 

 

Quantum Circuits 

 
 

2-Qubit Gates 

C-NOT (CX) gate (controlled-NOT gate) : Creates entanglements between qubits.  

CX |00〉 = |00〉 

CX |01〉 = |01〉 

CX |10〉 = |11〉 

CX |11〉 = |10〉 

> CX gate is controlled on the first qubit and targets on the second qubit. If the first qubit is zero, then it does nothing to the 

second. If first qubit is 1, then it applies the X gate to the second and flips it to whichever state it adds up it after applying the 

X gate. 
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|00〉
𝐻
→ (|0〉 + |1⟩)|0〉 ≡ |00〉 + |10⟩

𝐶−𝑁𝑂𝑇
→    |00〉 + |11〉 ≡ 𝑴𝒂𝒙𝒊𝒎𝒂𝒍𝒍𝒚 𝒆𝒏𝒕𝒂𝒏𝒈𝒍𝒆𝒅≡  |+ +〉 + |− −〉 

 

Because if we measure the first qubit and get “zero” value, we know the second bit is “zero”. If we measure the first qubit 

and get “one” value, we know the second bit is “one”. The corresponding circuit is as follows: 

 

In order to measure in plus minus basis (instead of zero – one basis): 

 

Bell states 
These are important entangled states. By using previous circuit with different input pairs such as |0〉 & |0〉, |0〉 & |1〉, |1〉 & 

|0〉 and |1〉 & |1〉, we obtain the following outputs that are called as bell states: 

 
|∅+〉 = |00〉 + |11〉 

 

|∅−〉 = |01〉 + |10〉 

 

|𝜓+〉 = |00〉 − |11〉 

 

|𝜓−〉 = |01〉 − |10〉 

 

These bell states form an orthonormal basis: 

〈𝜙𝑖|𝜙𝑗〉 = 0      𝑇ℎ𝑒𝑦 𝑎𝑟𝑒 𝑎𝑙𝑙 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 

 

Each bell states are maximally entangled. 

 

Pure and Mixed States 
For entangled qubit pair, if we want to describe the state of one of the qubits, we need to introduce density matrix: 

 

Let say:   |ψ〉 = |00〉 + |11〉 

 

𝜚 = |𝜓𝑋𝜓| = (|00〉 + |11〉)(〈00| + 〈11|) = |00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11| = (

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

) 

 

This means, we can represent our overall state of the two qubits this matrix called “density matrix” instead of the ket 

notation, which we called the state vector. 

 

Partial trace: If we call overall state  ϱ12, then to get ϱ1 , we do the partial trace over the second qubit of ϱ12: 

 

𝜚1 = 𝑡𝑟2𝜚12 
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So the way that a trace works is that for a matrix, the trace is the sum of the diagonal elements. And in the bra-ket notation, 

we do the bra of each basis state and ket of each basis state on either side of our state to extract the diagonal elements. And 

then, we add them together to get the trace of a matrix. 

 

∑〈𝜓𝑗|𝜚12|𝜓𝑗〉

𝑗

 

 

If we do partial trace, this means that we are only doing this for one of the qubits:  

 

|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11| =  |0〉〈0|⊗ |0〉〈0| + |0〉〈1|⊗ |0〉〈1| + |1〉〈0|⊗ |1〉〈0| + |1〉〈1|⊗ |1〉〈1| 

 

So, the density matrix for first qubit is: 

 

𝜚1 = 𝑡𝑟2𝜚12 = |0𝑋0| + |1𝑋1|  𝑎𝑓𝑡𝑒𝑟 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑜𝑛 =
1

2
(
1 0
0 1

) 

 

For the second qubit: 

 

𝜚2 = 𝑡𝑟1𝜚12 = |0𝑋0| + |1𝑋1| 𝑎𝑓𝑡𝑒𝑟 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑜𝑛 =
1

2
(
1 0
0 1

) 

 

Result: If we look at the each individual qubit on its own, it’s as though it had half probability of being prepared  in the “zero 

state” and half probability in the “one state” but it is a statistical mixture of “zero” and “one” (instead of being a superposition 

of zero and one) because we do not know which is which. So, it’s different to having the state being zero plus one (|0〉 +|1〉). 

 

Because we see statistical mixture of zero and one, ϱ1 and ϱ2 are mixed states.  

• They do not have a definite state that we can write out using a state vector. 

• To write it using a state vector, we need to look up both systems together and then we have this overall entangled 

state (|ψ〉 = |00〉 + |11〉). So the individual states we have here (ϱ1 and ϱ2), they don’t tell us whether these qubits are 

entangled or not, they just mean that will get outcomes as though we have a statistical mixture of the state zero and 

state one. 

• The significance of mixed states on the Bloch sphere is that pure states are all on the surface of the sphere whereas 

mixed states are inside. Every point inside the Bloch sphere can be represented by a mixed state. 

 

 

Quantum Teleportation 

IT allows us to get a quantum state and then by doing some interactions between that state and another quantum state, which 

we know is entangled with a far away quantum state that someone else has, we can make out two qubits interact, send that 

person some classical information. They can use that to reconstruct our quantum state, which was unknown on wherever they 

are in the universe. It is transport of the state of some unknown quantum system from one place to another, by only sending 

classical information from one place to another. 

 

Example: A and B are in different cities, and they have only a telephone line for communication. A and B has one entangled 

qubit and A want to transport the unknown state of qubit ψ to B: 

 

Answer: The quantum circuit is as follows. A only informs B for the measured state of the first qubit and B then applies X 

and/or Z gate to obtain the state of ψ. 
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For |ψ〉 = α|0〉 + β|1〉: 

 

|ψ〉|00〉 ⇒ (α|0〉 + β|1〉) (|00〉 + |11〉) = α|000〉 + α|011〉 + β|100〉 + β|111〉 

 

After applying CNOT gate ⇒ α|000〉 + α|011〉 + β|110〉 + β|101〉 

 

After applying H gate ⇒ α|000〉 + α|100〉 + α|011〉 + α|111〉 + β|010〉 - β|110〉 + β|001〉 - β|101〉 

 

 = |00〉 (α|0〉 + β|1〉) + |10〉 (α|0〉 - β|1〉) + |01〉 (α|1〉 + β|0〉) + |11〉 (α|1〉 - β|0〉) 

 

 = |00〉 |ψ〉 + |10〉 Z |ψ〉 + |01〉 X |ψ〉 + |11〉 X Z |ψ〉 

 

Now:  

• if A informs that measured state is |00〉, then B directly gets ψ. 

• if A informs that measured state is |10〉, then B applies Z gate to get ψ. 

• if A informs that measured state is |01〉, then B applies X gate to get ψ. 

• if A informs that measured state is |11〉, then B applies XZ gates to get ψ. 

 

 
Related quantum circuit diagram17 

 

  

 
17 Use this link to open related quantum circuit design and simulation: 
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[%22Bloch%22,%22%E2%80%A2%22,%22X%22],[%22%E2%

80%A2%22,%22X%22],[%22H%22],[%22Measure%22,%22Measure%22],[1,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A

2%22,1,%22Z%22],[1,1,%22Bloch%22]],%22init%22:[%22+%22]}  

 

https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[%22Bloch%22,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,%22X%22],[%22H%22],[%22Measure%22,%22Measure%22],[1,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,1,%22Z%22],[1,1,%22Bloch%22]],%22init%22:[%22+%22]}
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[%22Bloch%22,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,%22X%22],[%22H%22],[%22Measure%22,%22Measure%22],[1,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,1,%22Z%22],[1,1,%22Bloch%22]],%22init%22:[%22+%22]}
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[%22Bloch%22,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,%22X%22],[%22H%22],[%22Measure%22,%22Measure%22],[1,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,1,%22Z%22],[1,1,%22Bloch%22]],%22init%22:[%22+%22]}
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The Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy 

and potential energy.18 

 

The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kinetic and potential energies of 

all particles associated with the system. The Hamiltonian takes different forms and can be simplified in some cases by taking 

into account the concrete characteristics of the system under analysis, such as single or several particles in the system, 

interaction between particles, kind of potential energy, time varying potential or time independent one. 

 

Schrödinger Equation 

 

Schrödinger Hamiltonian: 

 

By analogy with classical mechanics, the Hamiltonian is commonly expressed as the sum of operators corresponding to the 

kinetic and potential energies of a system in the form: 

 

Single particle: 

�̂� = �̂� + �̂�    𝑤ℎ𝑒𝑟𝑒 �̂� = 𝑉(𝑟, 𝑡): 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟    �̂� =
�̂�2

2𝑚
: 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  

(𝑚:𝑚𝑎𝑠𝑠 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  �̂� = 𝑖ℎ̅∇:𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 

 

∇2=
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
: 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 

 

⇒ �̂� =
ℎ̅2

2𝑚
∇2 + 𝑉(𝑟, 𝑡) 

 

Many Particles: 

�̂� = ∑𝑇�̂� + �̂�

𝑁

𝑛=1

   𝑤ℎ𝑒𝑟𝑒 �̂� = 𝑉(𝑟1, 𝑟2,⋯ 𝑟𝑁, 𝑡)      𝑇�̂� =
ℎ̅2

2𝑚𝑛
∇2𝑛 

 

So, Schrödinger Hamiltonian for the N-particle case: 

 

�̂� = −
ℎ̅2

2
∑

1

𝑚𝑛
∇2𝑛 + 𝑉(𝑟1, 𝑟2, ⋯ 𝑟𝑁, 𝑡)

𝑁

𝑛=1

 

 

 

and general form of the Hamiltonian: the Hamiltonian of the system is the sum of the separate Hamiltonians for each 

particle: 

�̂� =∑�̂�𝑖

𝑁

𝑖=1

 

This is an idealized situation—in practice the particles are almost always influenced by some potential, and there are many-

body interactions. 

 

 

 

 

 
18 https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics) 

https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
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Schrödinger Equation: 

 

The Hamiltonian generates the time evolution of quantum states. 

 

𝑖ℎ̅
𝜕|𝜓〉

𝜕𝑡
= �̂�|𝜓〉    𝑤ℎ𝑒𝑟𝑒 ℎ̅: 𝑃𝑙𝑎𝑛𝑐𝑘′𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, �̂�: 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 

 

Planck’s constant: defines the quantum nature of energy and relates the energy of a photon to its frequency: 

 

h= 6.62607015×10−34 joule-hertz−1  (to simplify the equations h=1) 

 

Hermitian: H† = H  where † ≡ transpose & complex conjugate 

 

 Ex: eigenvalue ≡ energy of system ⇒ [

𝐸1 ⋯ ⋯ 0

⋮ 𝐸2 ⋮

⋮ ⋱ ⋮
0 ⋯ 𝐸𝑛

]    ⇒     𝐻 = ∑ 𝐸𝑘|𝑘〉〈𝑘|𝑘 ≡ 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 

 

where k: energy eigenstates 

 

Ground state energy: Lowest possible energy ≡ lowest eigenvalue in the matrix 

 

Example:  �̂� = ℎ̅𝜔𝑋  𝑤ℎ𝑒𝑟𝑒 𝑋 = 𝑋 − 𝑔𝑎𝑡𝑒 𝑎𝑛𝑑 𝜔 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

 

Eigenstates: |+〉 :  +hω ,  |-〉 : -hω  ⇒ lowest eigenvalue =  -hω ≡ ground state energy ≡ |-〉 

 

 

Exponential of a Matrix 

 

In a matrix in a diagonal form: 

𝑓𝑜𝑟 𝑀 =∑𝑒𝑘|𝑘〉〈𝑘|

𝑘

     𝑓(𝑀) = 𝑓(𝑒𝑘)|𝑘〉〈𝑘| 

 

(means, doing some function to the matrix is same as doing the function on the individual eigenvalues, if the matrix is 

diagonal.) 

 

So, if we apply this rule to exponential function: 

𝑒𝑥𝑝(𝑀) = 𝑒𝑥𝑝(𝑒𝑘)|𝑘〉〈𝑘| 

 

Run this result in a Z gate: 

𝑓𝑜𝑟 𝑍 = (
1 0
0 −1

),   exp(𝜃𝑍) = (
exp (𝜃) 0
0 exp (−𝜃)

) 

 

Solving Schrodinger Equation 

 

Given the state at some initial time (t=0), we can solve it to obtain the state at any subsequent time. In particular, if H is 

independent of time, then: 

|𝜓(𝑡)〉 = 𝑒𝑥𝑝 [−
𝑖𝐻𝑡

ℎ̅
] |𝜓(0)〉 

 

𝑖ℎ̅
𝜕|𝜓〉

𝜕𝑡
= �̂�|𝜓〉 
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𝑖ℎ̅
𝜕

𝜕𝑡
|𝜓(𝑡)〉 = 𝑖ℎ̅

𝜕

𝜕𝑡
(𝑒𝑥𝑝 [

−𝑖𝐻𝑡

ℎ̅
] |𝜓(0)⟩) = −𝑖ℎ̅

𝑖

ℎ̅
𝐻 𝑒𝑥𝑝 [

𝑖𝐻𝑡

ℎ̅
] |𝜓(0)⟩ = 𝐻|𝜓(𝑡)〉 

 

 

For time t1 to t2: 

|𝜓(𝑡2)〉 = 𝑒𝑥𝑝 [−
𝑖𝐻(𝑡2 − 𝑡1)

ℎ̅
] |𝜓(𝑡1)〉 

 

𝑈(𝑡1, 𝑡2) = 𝑒𝑥𝑝 [−
𝑖𝐻(𝑡2 − 𝑡1)

ℎ̅
] : 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑔𝑎𝑡𝑒 

 

By using this unitary gate, we can find |ψ(t2)〉 = U|ψ(t1)〉 

 

 

Checking Unitarity 

 

𝑈 = 𝑒𝑥𝑝 [−
𝑖𝐻(𝑡2 − 𝑡1)

ℎ̅
] 

 

𝑈†𝑈 = 𝑒𝑥𝑝 [−
𝑖𝐻(𝑡2 − 𝑡1)

ℎ̅
]

†

𝑒𝑥𝑝 [−
𝑖𝐻(𝑡2 − 𝑡1)

ℎ̅
] = 𝑒𝑥𝑝 [

𝑖𝐻†(𝑡2 − 𝑡1)

ℎ̅
] 𝑒𝑥𝑝 [−

𝑖𝐻(𝑡2 − 𝑡1)

ℎ̅
] = 𝑒𝑥𝑝[0] = 𝟙  𝑤ℎ𝑒𝑟𝑒 𝐻† = 𝐻 

 

 

Commutativity 

 

For operators A and B we can say A and B commute if AB = BA . It is named as ‘commutator’ and shown as  {A, B] 

 

It means if we apply first A and then B to a state, it gives same result if we first apply A and then B operator. 

 

 

If AB = - BA then they are anti-commute and shown as {A, B} 

 

Exponentials with Commutativity 

 

Diagonalizable:  If any two matrices that can both be written in the “same” basis are simultaneously diagonalizable. 

 

If the matrices commute: 

exp(𝐴) exp(𝐵) = exp (𝐴 + 𝐵) 

 

Proof:  

𝑓𝑜𝑟   𝐴 =∑𝑎𝑘|𝑘〉〈𝑘|

𝑘

   𝑎𝑛𝑑 𝐵 =∑𝑏𝑘|𝑘〉〈𝑘|

𝑘

 

 

exp(𝐴) exp(𝐵) = exp(∑𝑎𝑘|𝑘〉〈𝑘|

𝑘

)exp (∑𝑏𝑘|𝑘〉〈𝑘|

𝑘

) =∑exp (𝑎𝑘)|𝑘〉〈𝑘|

𝑘

∑exp (𝑏𝑘)|𝑘〉〈𝑘|

𝑘

 

 

=∑exp (𝑎𝑘 + 𝑏𝑘)|𝑘〉〈𝑘| = exp (𝐴 + 𝐵)

𝑘

 

 

Example: The Z gate is diagonal in the computational basis [0〉 and [1〉 whereas X gate is diagonal in [+〉 and [-〉 basis. So, 

they don’t commute, and they are not simultaneously diagonalizable. 

 

Unitary Gates ⇔ Hamiltonians 
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For any unitary gate U = exp (iK) where K is some Hermitian operator ⇒ 

 

𝐾 = −𝑖 log𝑈 = −𝑖 log∑𝑈𝑢|𝑘⟩⟨𝑘|

𝑘

   𝑤ℎ𝑒𝑟𝑒 ∑𝑈𝑢|𝑘⟩⟨𝑘|

𝑘

 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑚 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 

 

= −i∑log𝑈𝑢 |𝑘⟩⟨𝑘|

𝑘

= −i∑log 𝑒𝑖𝜓𝑘 |𝑘⟩⟨𝑘|

𝑘

  𝑠𝑖𝑛𝑐𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 ≡ 𝑒𝑖𝜓𝑘  

 

= −i∑𝑖𝜓𝑘|𝑘⟩⟨𝑘|

𝑘

=∑𝜓𝑘|𝑘⟩⟨𝑘|

𝑘

= 𝐾† ≡ ℎ𝑒𝑟𝑚𝑖𝑡𝑖𝑎𝑛 

 

 

Evolutions of Subsystems 
Atom interacting with laser beam with varying intensity of ϴ ≡ open system: 

  
 

We can describe them altogether by a joint Hamiltonian to describe the system as a whole. We can consider the Hamiltonian 

just for the atom so this will be an approximation to the actual evolution of the atom, and this will correspond to a unitary 

gate. So, we can approximately model the dynamics of this atom by a unitary gate. This is important because if we can model 

it by unitary gates, then we can start to think about how to simulate it on a quantum computer because everything there is 

unitary apart from measurements.  

 

 

Simulating Hamiltonians 

 Simulating Hamiltonians classically are very inefficient. 

 

Remember that Hamiltonians are described by the Schrodinger equation: 

 

𝑖ℎ̅
𝜕|𝜓〉

𝜕𝑡
= �̂�|𝜓〉 

 

Let’s define the state of a particle as a function of its position using the inner product 〈x|ψ〉 = ψ(x) 

 

Then, Hamiltonian of a single particle is: 

 

𝑖ℎ̅
𝜕

𝜕𝑡
𝜓(𝑥) = [−

1

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)]𝜓(𝑥)   ∶ 𝐻𝑎𝑚𝑖𝑙𝑡𝑎𝑛𝑖𝑎𝑛 → 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 + 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 

 

If we have one qubit, we need to solve two equations: we need to know how |0〉 and |1〉 evolves and then we know how any 

linear combination of them evolves.  

 

If we have two qubits, we need to know how all 4 computational basis states (|00, |01〉〉, |10〉 and |11〉 ) evolve. So, we need 

to solve four equations.  
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Similarly, for n qubits, we need to solve 2n equations which increases exponentially. That’s why classical simulation is slow (and 

impossible to solve the n qubit equations for big n values) 

 

 

Local Interactions 

We can make the assumption that they are interacting locally rather than distant parts of the system are interacting.  

 

In the previous interaction example, notice that H2(ϴ) varies over time. Here, we first assume that Hamiltonian that is NOT 

varying over time. So, H is time independent.  In this case, we can use the earlier Schrodinger equation: 

 

|𝜓(𝑡)〉 = 𝑒𝑥𝑝 [−
𝑖𝐻𝑡

ℎ̅
] |𝜓(0)〉 

 

For simplification of this equation, we can split our system we’ve assumed local interactions as mentioned before. So, we can 

split Hamiltonian into small a sum of smaller Hamiltonians (let say, L parts) that are each acting on only a few qubits: 

 

𝐻 =∑𝐻𝑘

𝐿

𝑘=1

 

 

Such that, let say if H1 = X3X4, it means that an X gate is applied to qubit 3 and another X gate is applied to qubit 4. Again, if H2 

= Z5, it means that Z gate is applied to qubit 5.  So, we can have Hamiltonians corresponding to interactions between different 

qubits or just acting on a single qubit as well.  

 

For smaller subsystems, 𝑒−𝑖𝐻𝑘𝑡, it is easier to approximate quantum circuits, but we can’t rely on out operators commuting the 

H case. It means: 

 

𝑒𝑖𝐻𝑡 = 𝑒−𝑖 ∑ 𝐻𝑘𝑡𝑘 ≠ 𝑒𝑖𝐻1 + 𝑒𝑖𝐻2⋯𝑒𝑖𝐻𝐿 =∑𝑒𝑖𝐻𝑘𝑡  

 

Trotter Formula 

Let say we’ve Hermitian operators A and B: 

lim
𝑛→∞

(𝑒
𝑖𝐴𝑡
ℎ̅𝑛𝑒

𝑖𝐵𝑡
ℎ̅𝑛)

𝑛

= 𝑒
𝑖(𝐴+𝐵)𝑡

ℎ̅  

 

or 

lim
𝑛→∞

(𝑒
𝑖𝐴𝑡
�̅� 𝑒

𝑖𝐵𝑡
�̅� )

𝑛

= 𝑒𝑖(𝐴+𝐵)𝑡  𝑤𝑖𝑡ℎ ℎ̅ = 1  

 

So, if we use the approximation previously mentioned: 

 

𝑒𝑖(𝐴+𝐵)∆𝑡 = 𝑒𝑖𝐴∆𝑡𝑒𝑖𝐵∆𝑡 +𝑂(∆𝑡2)     𝑤ℎ𝑒𝑟𝑒 𝑂(∆𝑡2): 𝑒𝑟𝑟𝑜𝑟 

 

 

Simulating Schrödinger Equation 

𝐻 =
𝑝2

2𝑚
+ 𝑉(𝑥) ∶ 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 𝑜𝑓 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 

 

|𝜓〉 = ∫ |𝑥〉〈𝑥|𝜓〉 𝜕𝑥
∞

−∞

⇒ 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑎𝑠 𝑑𝑖𝑠𝑐𝑟𝑖𝑡𝑒 𝑠𝑢𝑚 ⇒ |𝜓〉 = ∑ 𝑎𝑘|𝑘Δ𝑥〉

𝑑
Δ𝑥

𝑘=−
𝑑
Δ𝑥

 

 

where d: total distance,  ∆x: space steps, particles moves from |-d〉 (when k=-d/∆x) to |+d〉 (when k=d/∆x).  
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Total length (total # of points) from -d to +d (including zero) is (2d/∆x)+1. So lets find the number of computational basis 

states (# of qubits : n ): 

 
2𝑑

Δ𝑥
+ 1 = 2𝑛 ⇒ 𝑛 = log(

2𝑑

𝛥𝑥
+ 1) 

 

∴ Advantage of using qubits → we can remove exponentials in classical states. 

 

We know that, [V(x), p/2m] ≠0 

 

and then, let’s compute the exponentials of the Hamiltonian individually and combine them as shown previously: 

 

V(x) → 𝑒−𝑖𝑉(𝑘Δ𝑥)Δ𝑡     and 
𝑝

2𝑚
 →  𝑈𝐹𝐹𝑇𝑥𝑈𝐹𝐹𝑇

𝑡 = 𝑝  ⇒ |𝑘〉 → 𝑈𝐹𝐹𝑇𝑒
−
𝑖𝑥2

2𝑚𝑈𝐹𝐹𝑇
𝑡 |𝑘〉 

 

∴ So, we reduce our simulation of the Schrödinger equation to simulating these individual Hamiltonians of the different 

subparts of the overall Hamiltonian. 

 

Fourier Transform (FT) 

 

QFT: Performs the Fourier Transform of amplitudes of a quantum state in a way that is much faster than what a classical 

computer could do. It does not allow us to perform usual Fourier Transforms that we can do any faster than a classical 

computer, because of the difficulty in retrieving the information from measuring quantum state. But we can use this technique 

of the QFFT within various other algorithms and it’s actually extremely useful for that reason. (i.e., factoring large numbers, 

shamed by Shores algorithm, phase estimation which is where you can approximate the eigenvalues of a unit tree operator …) 

 

Discrete FT:  

 

𝑎1, 𝑎2…𝑎𝑁 → 𝑏𝑘 =
1

√𝑁
∑𝑎𝑗𝑒

2𝜋𝑖𝑗𝑘
𝑁

𝑁−1

𝑗=0

 

 

⇒ QDFT: 

|0〉, … |N-1〉→|j〉 where: 

|j𝑘〉 →
1

√𝑁
∑ 𝑏𝑗𝑒

2𝜋𝑖𝑗𝑘
𝑁 |𝑘〉

𝑁−1

𝑘=0

 

 

 

FT of an overall state: 

∑𝑎𝑗|𝑗〉

𝑁−1

𝑗=0

𝑢𝑛𝑖𝑡𝑎𝑟𝑦
→     ∑ 𝑏𝑗|𝑘〉

𝑁−1

𝑘=0

 

 

Example: 

 

 
Three qubits Fourier Transform 
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An application Area of FT: Phase Estimation 

 

𝑈|𝑢〉 = 𝑒2𝜋𝑖𝜑|𝑢〉   𝑤𝑒 𝑤𝑎𝑛𝑡 𝑡𝑜 𝑘𝑛𝑜𝑤 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒 

 

Phase estimation happens in a few stages: 

 

Stage-1: 

Register-1: # of t register (set of qubits, in zero state) depends on how well we want to estimate the accuracy of ψ (in 

eigenvalue) and what probability we want to get a correct answer. 

Register-2: Consists of many qubits we need to characterize U state. 

 

* Then we apply Hadamard gate to each qubits in register-1 and we do a series of controlled gates from the first register to the 

second register.  

* We do our first control gate from the bottom qubit (of the register-1) is a control of 𝑈2
0
(of register-2) and then we continue 

this pattern where we go, next qubit 𝑈2
1
 up to 𝑈2

𝑡−1
 

* We find that the outcome of the second register is still U because we’ve just been adding phases. 

* So, overall phase estimation: When we measure the first register at the end, in the computational basis, what we get out are 

the digits of the phase. It means, if 𝜑 = 0.𝜑0𝜑1⋯𝜑𝑡 and we can know φ if we know all of these t bits and the states that our 

qubits end up in after the first stage. It means, after applying Hadamard and control gates and work through the state of qubits, 

we will get: 

 

1𝑠𝑡 𝑠𝑡𝑎𝑔𝑒: 
1

2
(|0〉 + 𝑒2𝜋𝑖0.𝜑𝑡|1〉) + (|0〉 + 𝑒2𝜋𝑖0.𝜑𝑡−1𝜑𝑡|1〉)⋯ 

 

and then after we apply the inverse Fourier transform, it simplifies this expression → |𝜑1𝜑2⋯𝜑𝑡〉  

 

Then we can measure all qubits in the first register in the computational basis and we know the value of φ exactly. 

 

 
 

If we cannot prepare the state U directly, we can prepare other state: 

 

|Ψ〉 =∑𝑐𝑢|𝑢〉

𝑢

 𝑤ℎ𝑒𝑟𝑒 |𝑐𝑢|
2: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 

 

to obtain the approximate of φ value (if we can’t prepare U) 

 

Complexity 

For classical algorithms: 
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For exponential, we need exponential time in classical computers. But in quantum, the complexity is shifted from 2n to n2 

(shift from exponential to polynomial) with Shores algorithm.  

 

Complexity Classes 

 
 

BQP: BQP is the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of at 

most 1/3 for all instances. 

BPP: BPP is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error 

probability bounded by 1/3 for all instances. 

 

For a particular model of a quantum system its simulation consists of the ability to emulate how the state of the system changes 

in time. A simulation with the ability to track the wave function as a function in time precisely can also estimate observables19.  

 

The models we examine will be described by a Hamiltonian H (which describes how the pieces within that system interact) as 

long as our systems are closed.  

 

If H is time-independent, then its time-evolution propagator is given by: 

 

|Ψ(𝑡)〉 = 𝑈(𝑡, 0)|Ψ0〉 = 𝑒
−𝑖𝐻𝑡|𝜓(0)〉 𝑤ℎ𝑒𝑟𝑒  𝑒−𝑖𝐻𝑡: 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑜𝑟 

 

If H(t) is time-dependent, then the propagator is given by: 

 

 
19 Observables are the types of things that would be measured in a lab setting and we want to understand how those 
expectation values change with time as the wave function evolves. 
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|Ψ(𝑡)〉 = 𝒯 𝑒𝑥𝑝 [∫ 𝑑𝑡′𝐻(𝑡′)
𝑡

0

] = 1 − 𝑖 ∫ 𝑑𝑡1𝐻(𝑡1)
𝑡

0

+ (−𝑖)2∫ ∫ 𝑑𝑡1𝑑𝑡2𝐻(𝑡1)𝐻(𝑡2)
𝑡1

0

+⋯
𝑡

0

 

 

Why Simulation? 

• Model validation with experiment 

• Model to model validation 

• Savings in terms of time and resources compared to running experiments 

• Emergence of states and phases 

 

Gibbs State: It is an equilibrium probability distribution which remains invariant under future evolution of the system. For 

example, a stationary or steady-state distribution of a Markov chain, such as that achieved by running a Markov chain Monte 

Carlo iteration for a sufficiently long time, is a Gibbs state.20 

 

Probability Distribution: It is the mathematical function that gives the probabilities of occurrence of different possible 

outcomes for an experiment.21 

 

 
 

Markov Chain: It is a stochastic model describing a sequence of possible events in which the probability of each event depends 

only on the state attained in the previous event.22 

 
Two-state Markov Process 

 

 

 

 

 

 

 

 
20 https://en.wikipedia.org/wiki/Gibbs_state  
21 https://en.wikipedia.org/wiki/Probability_distribution  
22 https://en.wikipedia.org/wiki/Markov_chain  

https://en.wikipedia.org/wiki/Gibbs_state
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Markov_chain

