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single systems

A !?REHKTHFEDUGH IN
Quantum Information GQUANTUM COMPUTING

Simplified Description: Quantum states are represented by vectors;

operations are represented by unitary matrices. :6-,:":._

'; £l L)
General Description: Quantum states are represented by density matrices; s ![f:'#‘! o
allows for a more general class of measurements and operations. = lj:h.l'ﬂ r

Classical Information
Consider a physical system “X” that stores information.

N
Q

R -
Assume X can be one of the finite number of classical states ( 3 ) at each
moment. COPYRIGHT (C) 2000 LLAD  HTTH

Example:
o ifXisabit, ¥ ={0, 1} = binary alphabet
o if Xis six-sided dice, 3 ={0, 1, 2, 3, 4, 5, 6}
o if Xis switch of an electric fan, 3 = {high, medium, low, off}

Pr( x = 0) > probabilistic state = probability where it is in classical state “0”
Succinct way to represent is “column vector”:

Example: if Pr(x=0) = 3/4 and Pr(x=1) = 1/4, then, column vector is:

3/ 4\« entry corresponds to 0
1 / 4) < entry corresponds to 1

Probability vector:
e Entries are nonnegative real numbers and sum of all entries are “1”

Some Superposition Quantum States
1
+)=—=(0)+]1
[+) rz(I) 1)

1
=) =ﬁ(|0>—ll))

i) =%(lo>+u1>)

i) =%(|o>—i|1>>

Dirac Notation
|S| = Number of elements in set

#+ Wedenoteby| a) (called ket) the column vector having a 1 in the entry corresponding to a € )] with O for all other entries.

Example: if S ={0, 1}, then:
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[0y = (3) and

/0)and |1)are orthogonal’, normalized

Note: This is a popular basis called computational basis. Also, other popular basis is |+) and |-) where:

1
—)y=—

<

+) =

For probabilistic requirement, valid quantum state vectors should satisfy this:

1)

- ()

and linearly independent

S =500+ |

1 1
w7

N-1
Zaiz =1

i=0

Representation of Popular Qubits

=—=(0)—11)

May 2023

|0) (5) ©l a o
1) ) (1 © D
1 1 1 1
14 50+ 11) =) +1 () 50 D
Loy - NG i 11l 1a -
B 50 -11) () | =) S0 -1
. P L1 Lol r
b 750 +111) 10 l o) Z1 =D
. 1 . 11 1 /(0] 1 ,
1) 75 (10— i11) =) il — 51 D
+ For 2 qubits:
aobo
|a)=(2(1)) and |b)=(2i) = |ab) = ZTZ:)
a, by

Here |ab) is product combined state of |a) and |b) where |a) represents the qubit on the left and |b) is the one on the
right. From probability perspective:

! Orthogonal: geometrically perpendicular to each other
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Piay(10)) = Plany(100) + ppapy (101)) = (agho)? + (aghy)? = adbg + ajb? = (b5 + b?)as = a}

Example:
11
V22
11 1
| vevz | _1f1) 1
[+ +) = 11 =51 3 —2(|00)+|01)+|10)+|11))
V22 1
11
V22
Samely:
1
I—+)=§(I00)+|01)—|10>—I11))
Others:
1 1 1 1
11 11 11 _ 11
o=zl 1-o=31T1] #o=3(T ] Fo=Pm=3
1 1 -1 -1

e We denote by (a| (called bra) the row vector having a 1 in the entry corresponding to a € )’ with O for all other entries.

Example: If . ={0, 1}, then : Ol=10 (@|=(0O1

o (a| + |a) =(a]]a) =(aJa)~> bra-ket @)]Its meaning may be expressed as follows: “How much does the second

vector contain the first vector” (

)

Example:

|0>=((1)) and (0= (1 0) = (0]0)=1

|1>=((1’) and(1]=(0 1) = (11)=0

In the same way: (+|+) = (-|-) = (i]i) = (-i]-i) =1
and also (0|1) =(1]0)=0
~ If first vector is same as second vector in bra-ket, the result is 1 otherwise result is 0.

For | ) = a|0) + B|1):
** (0| P) means “the amplitude of zero state of qubit /" = a(0]0) + B(0]|1) = «
** (0| P)|2 means “probability of zero state of qubit " = |a|?

Vectors of this form are called “standard basis vectors”. It means, every vector can be expressed uniquely as a linear

combination of standard basis vectors.
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~ |0)and |1)are orthonormal? basis.

Example:
3/
4 3 1
=210y + 1)
(1/4> a4

e Toget(a| from |a), we need to take the conjugate transpose:
a

W=t =(5) =@ g

In other words, if |{) = a|0) + B|1) = (Y| =a*(0] + B*(1]
where a=x+iy = at=a*=x-iy

e  For U|) where Uis a quantum gate: (U[Y)T = (Y|UT where Ut = complex transpose
It means:
_ a c _ a* b*
U=, 4) =V (c* d*)

)= (g) =al0)+ 41D = (¥Dt=@wl=@ B

Ulyp) = (aa + cp)|0) + (ba + dp)|1)
UpNt = (a*a* + B*c* a*b* + prd")
** Gates are applied to “cat” from left and they are applied to “bra” from right.

** For any quantum gate U, UUT = UTU =1 vU = unitary matrix
** \We know that, for any matrix M, M. MMM =1 = Ut=0U"!

** When we apply the inverse of gate(s), we get the same state before gate-application:

Oﬁ—‘r—r
G

—‘I_S—‘l_ H

Al 4
|

O HHSHTHHF, AHHT

~ All quantum gate operations are reversable!

Measuring Probabilistic States
If we measure a system X while it is in some probabilistic state, we see a classical state chosen at random according to the

probabilities.
Suppose we see a classical state a € ) . So:

Pr(X=a)=1

This probabilistic state is represented by the vector | a )

2 two vectors in an inner product space are orthonormal if they are orthogonal ( ) unit vectors.
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For Pr(x=0) = 3/4 and Pr(x=1) = 1/4, measuring X reveals a transition, chosen at random:

3 0) + ! 1
210+ 2 1)
To find the probability of measuring a state | s} in the state |x) we do:

p(1x)) = [{x[P)I?

Example: If we look at the state | qo), we can see the probability of measuring |0) is indeed 0,5: (randled in py#2)

1 i
|q0)=ﬁ|0>+ﬁ|1)
Olge) = = (010) + = (1[1) = =1+ =0 = L
Olqo)? = 5

The Implications of this Rule

1. Normalisation: The rule shows us that amplitudes are related to probabilities. We need the magnitude of the state vector
tobel = (YU|Y)=1

Thus, for generalized state of a qubit | /) = a|0) + B|1) (where a, § € C: complex numbers) = |a|2+ |B]?=1

2. Alternative Measurement: The measurement rule gives us the probability p(|x)) that a state |{s) is measured as |x).
Nowhere does it tell us that |x) can only be either |0) or |1).

3. Global Phase: We know that measuring the state | 1) will give us the output 1 with certainty. On the other hand,

HELE

|(XIGIINIZ = [I(x[1)]* = [(x[1)]?

But, since:

= This effect is completely independent of the measured state |x)

. . 2 . 2 .
Example: e is a global phase. Since |e‘9a| = |e‘9| la|? = |al? = [) = e®|P) ~ Multiplying a qubit state with a global
phase does nothing in qubit’s physical state.

4. The Observer Effect: The act of measuring changes the state of qubits (collapsing the state of the qubit).

19y = [5] ““5 1gy =10y =[]

To achieve truly quantum computation, we must allow the qubits to explore more complex states. Measurements are therefore
only used when we need to extract an output. This means that we often place all the measurements at the end of our quantum
circuit.

x-measurement: Simply perform an h gate immediately before measurement.
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z-measurement: The standard form of measurement, which is done with just a measure gate.

q

1 0
C #

#+ Hadamard gate reverses the roles of the z measurement and x measurement. This leads to a simple effect in the
visualization: it swaps the two lines.

The Uncertainty Principle: “for certain pairs of attributes of a quantum system, it is impossible to know both with certainty.”
(Werner Heisenberg)

We could choose to encode a bit of information in a qubit.
e We can do it the normal way, using the |0) and |1) states to encode the bit values 0 and 1 and using the z
measurement to read it out.
e Orwe could do it an alternative way, using the |+) and |-) states to encode the bit values and the x measurement for
read out.
But the uncertainty principle makes sure that we can't do both at once.

The Bloch Sphere
For generalized state of a qubit |g) = a|0) + B|1), we can only measure the difference in phase between the states |0) and
| 1). Let’s confine a, B to the real numbers and add a term to tell us the relative phase between them:

gy =al0)+e®B|1) a,B, PER

According to the normalization in qubit state, \/a? + 82 = 1 and using trigonometric identity Vsin?x + cos?x = 1, we can

cosf
2 B=

sin 6
2

obtaina = . From this, we can describe the qubit state as:

7] ) 7]
|q)=cos§ |0) + ei®Sin Ell) 0, € R

Now, we can plot any single qubit state on the surface of a sphere, known as the Bloch sphere. A qubit in the state |+) (where
O=n/2 and ®=0)

from qiskit_textbook.widgets import plot_bloch_vector_spherical
coords = [pi/2,0,1] # [Theta, Phi, Radius]
plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates

|0)

7
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4+ State vector holds the amplitudes for the two states our qubit can be in. The Bloch vector is a visualization tool that maps
the 2D, complex state vector onto real, 3D space.

+ For n qubits, there are 2" possible outcomes ( ) and we can store these amplitudes in lists of length 223 which we
call state vectors ( ).

State vector for two qubits:

|1l)) = C00|00> + C01|01) + C10|10) + C11|11> =

Example: This is an example of a state vector for a quantum computer with two qubits:

1
( /\/5\| amplitude of state 00
amplitude of state 01
|x) = 1/\/7 = i ! V2
0

0

amplitude of state 10
amplitude of state 11

OO R P

and if we define:

100) = |01) =

SO O
(=Nl )]

then:
1

ﬁ(|00)+ [01))

|x) =

+ For n qubits, there are 20+ transition amplitudes.

Example: The following matrix shows the transition amplitudes for CNOT operation:

CNOT =

o O O
= o oo
o= OO
(==l ]

Coordinate System Transformation for Qubit Vectors
(W) =oa|0)+B|1) and |o|24+|B]2=1 = ro + 1t =
=1,e¥a|0) + r,et¥r|1)
=eWa (1,]0) + r,e!@r=¥a)|1)) = (1,]0) + r,e/¥p=¥2)|1)) since e« is a global phase and it is 1.

Since cos? 8/2+sin? 8/2=1 = we can replace 1, = cosg and rg = sing also Yg—P,=¢
Finally:

6 i < O . . .
) =cos |0) + e sin 3 |1) = spherical coordinate system representation

Inverse transformation:
For z=x + iy:

3 To fully describe the state of qubits, we may need to keep track of up to 2" amplitudes. But, if we begin in a product state, it
is possible to keep track of everything with a very manageable 2n amplitudes, rather than the full 2". Since anything that is not
a product state is an entangled state, we find that entanglement is a necessary ingredient of any quantum advantage.
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Ir] = {x2 + y?

6 = arctan (%)

=Y

For |¢) = o |0) + B | 1), we can transform the vector into spherical coordinates as:
[P) = cos (6/2) |0) + ei® sin (6/2) |1)

with transform from cartesian coordinates to spherical coordinates and find the
location of qubit in Bloch sphere:

X =sin © cos @

y =sin B sin ®

Z=cos O

Example: [$) = %(lo) +[1) =0 =§ and ¢ =0 (

Example: To find the position of this qubit in Bloch sphere, find © and @ values. (

)
3+l\/_

) = IO)——Il)

Answer:

Forz=x +iy, |r| = /x? + y2 = for our qubit || = ACLE

:|¢>=§ei%|o>—3|1>=ef"(—|o>—e-% ) Zioy-e Z%u):%owemf%%u)

6 = arctan (y) = 6 = arctan = arctan( 1 ) = T= 30°
x 3/4 NE 6
1
2 2 2

V3 5] T 5
=—|0>+€L?E|1>$ 9=§ and¢)=?

2
7 T
|1/1)—cos< /3)|0)+e 6sm( /3>|1)
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Some complex number conversions:

+ eim=-1 ( Euler’s Formula®: e = cosx + isinx )
+ eig =1

+ ei% =i

+ |ei‘9|2 =1

Deterministic® Operations
Every function f: ) —) describes a deterministic operation that performs the classical state a into f(a) foreach a € )]

Given any function f : )] —), there is a unique matrix M satisfying:

M ja) = [f(a)) (foreverya €))
_ (1 b=f(a)
M(b,a) = {0 b# f(a)

The action of this operation is described by matrix-vector multiplication:
vi—> My

—> map sign

Example:
a | fila) a| fi(a) a| fs(@ a| fu(e)
0 0 0 0 0 1 0 1
1 0 1 ‘ 1 1 ‘ 0 1 ‘ 1
(1 1 _ (1 0 _ (0 1 _(0 0
Ml_(o 0) MZ_(O 1) M3‘(1 0) M4‘(1 1)
We see that:

Mz1: Constant zero function
Ma: Identity function
Ms: Negate function
Ma: Constant one function

e The Dirac notation can be used for arbitrary vectors: Any name can be used in place of a classical state. Ket’s are column
vectors and bra’s are row vectors.

Example: The notation |i) is commonly used to refer to an arbitrary vector:

1+2i

1420 2 | 3

W= =Fl0-S i =| 3,

3

|W) is linear combination of |0) and |1) which is called “superposition”

1-—2i 2 1-2i 2
= ol—=-(1]=(—== _Z
Wl = <=0 -51=(5~ -3

where | ) is qubit’s state vector. For any column vector |1}, the row vector (| is the conjugate transpose® of |1)

4 https://en.wikipedia.org/wiki/Euler%27s formula

5> Deterministic: There is no randomness or uncertainty involved.

6 Complex Conjugate: Invert (negate) only the complex part of the number.
Transpose: Rows become columns.
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Wl =

py#1: Sample Python code for: set state of a qubit and it’'s measurement’s drawing

Output:

from qiskit import QuantumCircuit, assemble, Aer

from qiskit.visualization import plot_histogram, plot_bloch_vector

from math import sqrt, pi

qgc = QuantumCircuit(1)

initial_state = [0,1] # Define initial_state as |1)

qc.initialize(initial_state, 0) # Apply initialisation operation to the 0" qubit
sim = Aer.get_backend('aer_simulator')

qc.save_statevector() # Tell simulator to save statevector

qobj = assemble(qc)  # Create a Qobj from the circuit for the simulator to run
result = sim.run(qobj).result() # Do the simulation and return the result
out_state = result.get_statevector()

print(out_state) # Display the output state vector

qc.measure_all()

qc.draw()

Statevector([0. + 0.7, 1. + 0.7], dims=(2,))

state\:rector
« Jl—
1

meas

py#2: Qubit in superposition

Output:

E D
from qgiskit import QuantumCircuit, assemble, Aer
from qiskit.visualization import plot_histogram, plot_bloch_vector
from math import sqrt, pi

initial_state = [1/sqrt(2), 1j/sqrt(2)] # Define state |q_0>

qc = QuantumCircuit(1) # Must redefine qc

qc.initialize(initial_state, 0) # Initialize the 0" qubit in the state “initial_state’
qc.save_statevector() # Save statevector

qobj = assemble(qc)

state = sim.run(qobj).result().get_statevector() # Execute the circuit
print(state) # Print the result

qobj = assemble(qc)

results = sim.run(qobj).result().get_counts()

plot_histogram(results)

Statevector([0.70710678 + 0.7, 0. + 0.70710678j], dims=(2,))

Conjugate Transpose: First apply conjugate, then apply transpose.

May 2023
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0.5 0.5

0.45 1

0.301

Quasi-probability

=]
=
(53]

0.00-

Multiplying row vector to column vector:
_ _ (1L a=b
(alb) = (al by = {; 227

which is inner product. According to the definition, (1]0) =(0|1) =0and (0|0) = (1|1) =1

Multiplying column vector to row vector:

Example:
ol - (a o= (¢ 0
ol = (Do n=(J })
e - Qav- € )
ot - Qe n- (0

~ Ingeneral, |a){b| has a 1in the (a, b) entry and 0 for all other entries.

Result:

M= > 1B bl

beX

Mla) = > If®)) (bla) = If (@)

beX

Probabilistic Operations
Probabilistic operations are classical operations that may introduce randomness or uncertainty.

Example:
e Ifthe classical state is 0, then do nothing.
e  Otherwise flip the bit with probability %.
Corresponding matrix is:
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We see that this function is also equal to % probability of “constant zero function” and % probability of “identity function”.

Probabilistic operations are described by stochastic matrices:
e All entries are nonnegative real numbers,
e The entries in every column sum to 1.

e If we want to find the probability of two unrelated events occurring, we multiply their probabilities together.

FExample:
For qubits |a) and |b) with two-qubit states |ba), what is the probability that the qubit on the right comes out 0 ?

agbg
aogby

la) = (Zj) |b) = (Zi) and |ab) = a.b,
a, by
where ao is the amplitude of state 0 and so on. So, probability of state |a) as |0) :
Py (10)) = Pipgy(]00)) + Pipgy (110)) = (boag)? + (b1a)? = bia§ + bia§ = (b§ + bi)a§ = af
**(boay)? is the probability of measuring 00 ( )

** pZ + b? = 1 because this is the probability of qubit b “being 1” and “being 0”. Sum of them gives the total probability. Total
probability of a qubit is always 1.

Composing Operations
Suppose X is a system and My, .... M are stochastic matrices representing probabilistic operations on X. Applying the first
probabilistic operation to the probability vector v, then applying second probabilistic operation to the result yields this vector:

M,.(My.v) = (My.My).v

The probabilistic operation obtained by composing the first and second probabilistic operation is represented by the matrix
product M;M.

Composing the probabilistic operations represented by the matrices M1, ... M (in that order) is represented by this matrix
product:

My .. M,

Important: Matrix multiplication is NOT commutative !

Quantum Information
A quantum state of a system is represented by a column vector whose indices are placed in correspondence with the classical
state of that system:

e The entries are complex numbers,

e The sum of the absolute values squared of the entries ( = Euclidean norm) must equal 1.

The Euclidean Norm (||v||) for vectors with complex number entries (o) is defined as:

Dr. Mustafa AFYONLUOGLU
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Quantum state vectors are therefore unit vectors with respect to this norm.

Examples of qubit (quantum bit) states:
e Standard basis states: |0) and |1)
e  Plus / minus states:

4) = = 0)+ = 1) and |=) = —=]0) — 1)

V2 V2 V2 V2
e A state without a special name:
1+4+2i 10) 2 1

Measuring Quantum States
Measurements provide a mechanism for extracting classical information from quantum systems.

Standard basis measurements:
e The possible outcomes are the classical states.
e The probability for each classical state to be outcome is the absolute value squared of the corresponding quantum
state vector entry.

Example: Measuring the quantum state for qubit in + state:

1 1
[+)=—10)+ — |1)
V2 V2
yields an outcome as follows:
Pr(outcome is 0) |121P(t is 1) |121
r(outcomeis0) = |—=[ == Pr(outcomeisl) =|—=| ==
Va2l o 2 Va2l o 2
Example: Measuring this qubit’s quantum state:
1+ 2i 2
0)— - |1
T 10— S 1D
yields an outcome as follows:
_ 142> 5 _ 21> 4
Pr(outcome is 0) = | 3 =3 Pr(outcomeis 1) = |—§ =3

Measuring a system changes its quantum state: If we measure a system when it’s in a quantum state, then the state will change
as a result of having performed that measurement. .- if we obtain the classical state a, the new quantum state becomes |a).
For the state in the previous example, if we measure (with probability 5/9), we obtain the outcome “zero”, in which case, the
state transitions to |0). (Itis referred to as “collapse of the quantum state”)

Example: Measuring this qubit’s quantum state:
1
V2

1 V3 1
[00) +§|01>+_|10)+Z|11>

) = :
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2_1

Probability of 100) = 3

2+ 1,2
2

1
Probability of |0) for left ubit=|—
y of |0) for left q NG

. 3
Probability of |1) for left qubit = e +

2

3
4
1
4

1
4

If we measure left qubit as “0”, the qubit pair collapses to this new position:

w}) collapses 1 |00) n 1 |01>
-y _
V2 2

The final state collapses to the kets where left-qubit is zero. But total probability of this new state is not one. So, we should

2)—1 = A= 2
B 3

normalize it:

2+|1
2

1
A(|ﬁ

1
ly) = ﬁ(ﬁIOOH 101))

Then normalized new state is:

Unitary Operations
The set of allowable operations ( ) that can be performed on a quantum state is different than it is for classical information.
Operations on quantum state vectors are represented by unitary matrices. (Operations on probabilistic states are represented

by stochastic matrices)
To preserve the total probability in all cases, our operations need to be reversible. This means we can perform our quantum
gates backwards to 'undo' them and be left with the state we started with. We say matrices with this property are unitary.

Definition: A square matrix U having complex number entries is unitary if it satisfies the equalities:

UTU =1 = UU? (for square matrices)

where U7 is the conjugate transpose of U and 1 is the identity matrix. Both equalities are equivalentto U~ = UT
The condition that an » x » matrix U is unitary is equivalent to:
lUv|l = vl
For every n-dimensional column vector v with complex number entries.
If v is a quantum state vector, then Uv is also a quantum state vector.

Operations should be designed by matrices, transformations act linearly on vectors representing states.

Conditions of being a Quantum Gate

e A quantum gate U:
o should be linear, means, U(a|0) + B|1)) = aU|0) + BU|1)
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o should give an output such that |a'?| + |8?| = 1

o should be reversible, means, if you re-apply gate to the output vector of it, the original values should be
obtained.

Qubit Unitary Operations
Pauli Operations: Pauli operations are ones represented by the Pauli matrices given below:

00 wmC ) D an )

Common alternative notations: X=0x, Y=oy and Z=o0;
The operation oy is called a bit flip (or a NOT operation), and the o, operation is called a phase flip:

ox |0)= | 1) o: |0)=|0)
ox |1)=0) 0. |1)=-]1)

Pauli X Pauli ¥ Pauli Z

X gate is represented by “.cx(in, in)” in Quiskit.
Z gate is represented by “.cz(in, in)” in Quiskit.

o X*X=Y*Y=Z7*Z=1

from qiskit import QuantumCircuit, assemble, Aer
from math import pi, sqrt

from qiskit.visualization import plot_bloch_multivector, plot_histogram
sim = Aer.get_backend('aer_simulator')

# Let's do an X-gate on a [0) qubit

gc = QuantumCircuit(1)

gc.x(0)

# Let's see the result

gc.save_statevector()

gobj = assemble(qc)

state = sim.run(qobj).result().get_statevector()
plot_bloch_multivector(state)
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Hadamard Operation: This gate allows us to move away from the poles of the Bloch sphere and create a superposition of

|0) and |1). It has the matrix:

(L
2

\7z

)

A
) "

Checking that H is unitary is a straightforward calculation:

7z =) \

HI0)=]+)

1 1\'/1 1 1
V2 vz ||vz2 V2 |_|v2
11 1 1
2 —v2) \V2 2

)

\7z

HI1)=]-)

.
1
=

dl

73
N\&E =2

H[+)=10)

)

+
N[ RN =

N R, N[~

N RN =
+
N RN -

HI-)=11)

I~
[
= o
—

This can be thought of as a rotation around the Bloch vector [1,0,1] (the line between the x & z-axis)
Hadamard gate is represented by “.h(in, in)” in Quiskit.

Example: We can show that: X = HZH

HZH = !
-

1
1

O H g 1 £

Phase Operations ( p-gate ): The P-gate performs a rotation of © around the Z-axis direction.

P9=((1) l0

for any choice of a real number 0.

The operations:

are important examples.

A

1
B e e et B P B

Dn—J_)—

FFY

—a —

A 4
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Example:
141 0
T|0) = |0) andT|1)=T|1) whereT = | 1+i
2 vz
1 1+
T|+) = —|0) + 1
[+) ﬁl Y+—— 1)

HT|+) =

Gates Summary

V2

2

%I+)+ % |—>=G+1+i)|°>+(%_ﬂ)ll)

X
o
X Gate provides 180° rotation Y Gate provides 180° rotation Z Gate provides 180° rotation
in X axis in Y axis in Z axis
X[0)=[1) Y|0)=1i|1) Z|0)=1i|1)
X|1)=|0) Y|1)=-i|0) Z|1)=-i|0)
X[+)=I+) Y[+)=-i]-) Z|+)=|-)
X[-)=-I-) Y|-)=1l+) Z|-)=1+)
X|i)=]-1) Y[i)= i) Z|i)=|-i)
X|-i)=i) Y|-i)= -|-i) Z|-i)=li)

Some phase comments:

** The Z gate applied to a single qubit has the effect of doing nothing to |0) and giving a phase of -1 to the state |1).

** For the Z gate, it only has any effect at all when both qubits are in state | 1).

o -4 2
T 902 T db° TEZY |
: A
Wg y 7§ y | 7 | y
z T L
— —t
S (phase) Gate T (phase) Gate H Gate
X]0)=[0) T|0)=i[1) H|0)= |+)
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X|1)=1i]1) T|1)=e!"/a|1) HI1)=-)
XI+)=li) Tl4)= 1 (10) + Vi) HI+)=10)
X|-)=- i) T|)= HI-)=|1)
X|i)= Tliy= H|i)=
o T2=
[ ] SZ:Z
[ ] szﬂ
Representation of Popular Gates
, . _[0 1 0 i 1 o
Pauli gates : X_[l 0] Y_[i 0] Z—[O _1]
H:i[1 1] T—[l 0] :[1 0] _ 2
V2l -1 0 ez 0 i
X =HZH = HT*H
IG}—?—H—O’ z-ﬁ—Hion—L— [je_—
Y = SXZS = T?HT*HT®
of s ke {2 s B o e
x:+0.0000, y:+0.0000, z:-1.0000

oY B T
o " i Final amplitudes
Local wire states - - inal amplitudes
Chance/Bloch
Z=HXH=5*=T*
|y < @ H Of T Bloch sphere representation of local state |
r:+1.0008, p:+0.80%, 6:+0.08°
@ x:+0.0000, y:+0.0000, z:+1.0000
[0y — Of ] — 1
ocal wire states e = Final amplitudes
Chance/Bloch

Theorem: Every single-qubit gate can be defined as a rotation over an axis in Bloch gate.

Proof: Let’s define:

A general definition of a qubit is as follows:

axis.

fl = nyX +nyy +n,Z2 wherenZ+nj +nZ =

U=eY [cos (g)l —isin (9) (n X
2 2 x

where O is rotation angle, X, Y, Z are known gates and ny, ny, n, are the coefficients that determines the rotation

Dr. Mustafa AFYONLUOGLU
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Let’s see that Hadamard gate can be represented by U for:

1 1
l=—

£+—=2
V2§ V2

and 0=m
When we replace the variables into U, we get:
U= —ieiyi(x +7)
V2
Now, let’s apply generic qubit state to U and check if the result is same as Hadamard gate or not:

Ulo) = —ie"%(x +2)|0) = —ief%un +10)) = —iel |+)
( )

Ul1) = —ieiy%(x +2)[1) = —ieiy%(m) — 1)) = —iel¥|-)

when we gety = 7T/z = —ie’ = —i.i = (=1)(—1) = 1, and we see that U= H

In the similar way, we can show that U=S . We know that S gate rotates a qubit over Z axis /2 degree. So:

I~
Il
N>

0=""and y==
—2 an ]/—4

Let’s replace the variables over U, we get:

U= els— (I +iZ)
=e 4 — l
V2
Then, apply this gate to generic qubit state:
1—i T

V2

Ul0) = eizé(l —i)]|0) = |0) where

Ul1) = ei%%m + D) = e'2|1) = i[1)

So, we seethat U =S
Toffoli Gate: It is basic AND operation. It requires 2 inputs and it is represented by “.ccx(in, in, out)” in Quiskit.

CNOT Gate: The CNOT ( ) gate acts on two qubits, which are known as the 'control' and the 'target'. If the
control is in state |0), the cx does nothing. If the control is in state | 1), the cx performs an X (not) on the target qubit.
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Controlis 0 Controlis 1

£lip!

LN
_/

When the controlis 0, When the controlis 1,
the other qubit is unchanged the other qubit is flipped

C

CNOT gate is represented by “.cx(in, in)” in Quiskit.

Compositions of qubit Unitary Operations
Compositions of unitary operations are represented by matrix multiplication (similar to the probabilistic setting).

1 1 1 1 1+i 1—i
_ V2 V2 oon[V2 V2 || 2 2
R =HSH = 1 1 (0 i) 1 1 TN1-i 1+
V2. =2 V2. =2 2 2
1+i 1-i\?
2| 2 2 | _(1 0y_ o
R* = 120 14 _(O 1)—NOToperatlon—bLtfllp—X—ox
2 2

-~ Ris square root of NOT operation. (X = (HSH)?)

o4 H g S - —e{ H 50.0%, &= | Bloch sphere representation of local state |
r:+1.0000, g:+0.00°, 8:+188.00°

®:+0.0000, y:+0.0000, z:-1.0000

- H |- N4 SH o Hteese {HF — S| &£ 4 H — 00— o 7 S
] luu
@

= Final amplitudes

Local wire states
(Chance/Bloch)
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Multiple Systems
Classical States
Classical state of a system is a configuration of a system that can be recognized and described unambiguously

without any uncertainty or error.

Suppose that we have two systems:
e Xis asystem having classical state set ..
e Yis asystem having classical state set I'.

Imagine that, X and Y are placed side-by-side with X on the left and Y on the right, and viewed together as if they
form a single system. We denote this new compound system by (X, Y) or XY.

Classical state of XY is the cartesian product:
YxTI' = {(a,b):a€ Y and b € I'}

Example: If Y, ={0, 1}and I = {a, b, c}, then:
2 xI'={(0,a),(0,b), (0,¢),(1,a),(1,b),(1,c)}
This description generalizes to more than two systems in a natural way:

Suppose Xj, . . ., Xn are systems having classical state sets )1, . .. Y.n respectively. The classical state set of n-tuple
(X4, . .. Xn), viewed as a single compound system, is the Cartesian product:

i, ... Xn={(ar,...an): (@ EY,...an €Xn}
Example:if Y1 =3, =)3={0, 1}, then the classical state set of (X1, Xz, X3 ) is:
Y1xY2xY3={(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0,), (1,0,1), (1,1,0), (1,1,1) }

An n-tuple (a,, ... a,) may also be written as a string a, ... a. . ( )
Example: Suppose X, . . . X1p are bits, so this classical state sets are all the same:

Y1=X2 =...=210={0,1}
The classical state set of (X3, . . . X10) is the Cartesian product:

YixYa x...xY10={0,1}*°

Written as strings, these classical states look like this ( ):
0000000000
0000000001
0000000010
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Ordering Cartesian Product State Sets

Convention: Cartesian products of classical state sets are ordered lexicographically ( ):
e We assume the individual classical state sets are already ordered.
e Significance decreases from left to right.

Example: The Cartesian product {1,2,3} x {0,1} is ordered like this:
(1,0), (1,1), (2,0), (2,1), (3,0), (3,1)

When n-tuples written as strings and ordered in this way, we observe familiar patterns, such as {0,1} x {0,1} being
ordered as 00, 01, 10, 11.

Probabilistic States
Probabilistic states of compound systems associate probabilities with the Cartesian product of the classical state
sets of the individual systems.

Example: This is a probabilistic state of a pair of bits (X,Y):
Pr((X,Y)=(0,0)) =%
Pr((X,Y)=(0,1))=0
Pr((X,Y)=(1,0))=0
Pr((X,Y)=(1,1)) =%

14\ <« probability associated with state 00
0 | < probability associated with state 01
0 | « probability associated with state 10
¥/ <« probability associated with state 11

Definition: For a given probabilistic state of (X, Y), we say that X and Y are independent’, if:
Pr((X,Y)=(a,b))=Pr(X=a)Pr(Y=D0)
forall az€), and berls

Suppose that a probabilistic state of (X, Y) is expressed as a vector:

M=) lab)
(a,p)eyxr

The systems X and Y are independent if there exist probability vectors:

0)=) i) and |p) =) nlb)

aex beT

7 Statistical Independence = Absence or correlation
8 It says that, the probability of X to be in any one classical state and the probability of Y to be in some other classical state have absolutely
nothing to do with one another.

Dr. Mustafa AFYONLUOGLU



May 2023

Such that p,), = .7, for all a€)} and beT". ( )
Example : The probabilistic state of a pair of bits (X, Y) represented by the vector

I —1|00 ! |01 1|10 L1
m) = =100) +101) + 7 [10) +2]11)
is one in which X and Y are independent. The required condition is true for these probabilistic vectors:

—10 31 d —20 11
|®)—Z| )+Z| ) an |¢>—§| )+§| )

Example : For the probabilistic state
! |00) + ! 11
> 5111

of two bits (X, Y), we have that X and Y are not independent. = The bits are correlated.
If they were, we would have numbers qo, q1, ro, r1 such that:

Qoro="% Qor1=0 Qiro=0 qiri=%

But qor1 is zero, then either qo=0 or ro=0 (or both), contradicting either the first or last equality.

(

Tensor Products of Vectors

Definition: The tensor product of two vectors ( ) where % and T are any choice of classical state sets:
[®) = > aqla) ¥) =" Blb)
aex ber

is the vector:

|P) @ |¥) = | QW) = [D)Y) = |oF) = |d,¥) = Z aafy|ab)
(a,byezxr
Equivalently, the vector |t)=|®) @ |U) is defined by this condition:
(ab|m) = (a| P) (b|W) (for all a€}, and ber)
Example:
9 =710 +211) and 19) =310 +351D)

1 1 1 1
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e Following out convention for ordering the elements of Cartesian product sets, we obtain this specification for the tensor
product of two column vectors:
a1f1

a1 Bk
a2

ay B
el =]
()2 )

amﬁl

amﬁk

Important Properties of Tensor Products
** The tensor product of two vector is bilinear.
1. Linearity in the first argument:

(11) +192) @ ) = |21) Q@ [¥) + |D2) @ |¥)

(a|®)) ®¥)=a(|P)® |¥))
2. Linearity in the second argument:

D) @ (I¥,) + [¥,) = |9) @ [¥1) + |P) @ [¥;)
|P) @ (al¥)) = a(|P) ® |¥))
Tensor Products of Vectors
If we define [§) = |@;) ® [D;) @ - ® |P,,) then (a; - a,|P) = (a;|d) @ - (a,|d)

e The tensor product of three or more vector is multilinear.

Measurements of Probabilistic States

Measurement of compound systems work in the same way as measurements of single systems — provided that all of the
systems are measured.

Example: Suppose that two bits (X, Y) are in the probabilistic state % |00) + % [11) . Measuring both bits yields the outcome 00

with probability % and the outcome with the probability % . Because measuring all of the systems is equivalent to measuring
the entire compound system.
If we measure just X but don’t measure Y, then it means there is still could exist some uncertainty about the state of Y and this

uncertainty is reflected by this formula:

Pr((X,Y = (ab
Pr(Y =b|X=a) = r((Pr(X =(aa) :

Example: Suppose (X, Y) is in the probabilistic state % |00) + i [01) + i |10) + % [11), we write this vector as follows:

0@ (1310)+310) +10 ® (510 +511)

Case 1: The measurement outcome is zero:

_ 1 1
Pr(outcome is zero) = IH + 1°3
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Conditioned on this outcome, the probabilistic state of Y becomes:

1 1
ﬁ|0)+1|1) _1|0)+3|1)
1 T4 4

3

Case 2: The measurement outcome is one:

2
3

W =

1
Pr(outcome is one) = 3+

Conditioned on this outcome, the probabilistic state of Y becomes:

1 1
§|0)+§|1) 1 0 1 H
> —2| +2|

3

The same method can be used when Y is measured, rather than X. Suppose that (X, Y) is in some arbitrary probabilistic state:

> palab) = > pab|a>®|b>=z<z pab|a>>®|b>

a,b € xT a,b € IxI' bel \aeX

1. The probability that a measurement of Y yields an outcome a € X is:

Pr(Y =b) = ) pay

a€ex

2. Conditioned on the outcome b € T, the probabilistic state of X becomes

YaesPapla)
Zc € ):pc,b

Operations on Probabilistic States

Source: Prof. John Watrous® — IBM Quantum, Technical Director of Education
https://www.youtube.com/playlist?list=PL OFEBzvs-VvqKKMXX4vbi4EB1uaErFMSQO

9 Waterloo Universitesi'ndeki David R. Cheriton Bilgisayar Bilimleri Okulu'nda bilgisayar bilimi profesérii, Kuantum Hesaplama
Enstitiisi'niin bir (iyesi, Cevre Teorik Fizik Enstitiisii'niin bagl bir yesi ve Kanada Uyesidir.
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Simulators

Bloch sphere simulators:

** https://attilakun.net/bloch/

** https://www.st-andrews.ac.uk/physics/quvis/simulations html5/sims/blochsphere/blochsphere.html

** https://bits-and-electrons.github.io/bloch-sphere-
simulator/#{%22blochSphereStateProperties%22:{%22theta%22:%220.0000%22,%22phi%22:%2290.0000%22},%22customG
atesProperties%22:{},%22lambdaGatesProperties%22:{%22polarAngle%22:%220%22,%22azimuthAngle%22:%220%22}}

Quantum FlyTrap Virtual Lab - Simulator: https://lab.quantumflytrap.com/lab?mode=waves
Quantum Circuit Simulator: https://thequantumlaend.de/quantum-circuit-designer/
Quantum Circuit Designer: https://algassert.com/quirk

Other:
https://learn.microsoft.com/en-us/azure/quantum/concepts-the-qubit

Designing a new gate in Quirk Simulator Web Page
Let:

If we want to see this gate in Quirk simulation, do the followings:
- Enter Quirk web site (https://algassert.com/quirk).
- Click “Make Gate” button on top of the screen.
- Enter the coefficients of the gate into the “From Matrix” screen as follows:
o (sqrt(2)-i)/2, 1/2
o -1/2, (sqrt(2)+i)/2
- You will see the amplitude of each cell of the gate matrix and the gate rotation axis on the bloch sphere, in the bottom of
“From Matrix”.
- Give a hame to the gate from “circuit symbo
- Click “Create Matrix Gate” button.
- You will see the new gate in the right most side of toolbox-2 at the bottom of the screen.

|II

text box.

Quantum Computing: Search Algorithms

Grover's Quantum Search Algorithm

When searching any database, Grover's algorithm grows with the square root of the number of inputs, which for
unstructured search ( ) is a quadratic improvement over the best classical algorithm.

Each extra variable (bit) in our SAT problem doubles the number of possible solutions ( ),

so the search space grows exponentially with the number of bits. Since random guessing grows linearly with N, the
running time will grow by roughly 2".
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Randor |

guessing |

Grover’s

Random guessing -
| algorithm

fhm
Grover's algoritnt

Algorithm running time

Number of possible inputs Problem size (number of bits)

SAT (Boolean satisfiability problem)

SAT is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. The
satisfiability problem considers the case in which N boolean variables are used to form a Boolean expression
involving negation (NOT), conjunction (AND) and disjunction (OR). The problem is to determine whether there is
any assignment of values to the Boolean variables which makes the formula true. For simplicity, it is common to
require that the boolean expression be written in conjunction normal form or "CNF".

A formula in CNF consists of:

clauses joined by AND;
each clause, in turn, consists of literals joined by OR;
each literal is either the name of a variable (

( )-

), or the name of a variable preceded by NOT

Structure of CNF File:1°

The file may begin with comment lines. The first character of each comment line must be a lower case

letter "c".

The comment lines are followed by the "problem" line. This begins with a lower case "p" followed by a
space, followed by the problem type, which for CNF files is "cnf", followed by the number of variables
followed by the number of clauses.

The remainder of the file contains lines defining the clauses, one by one.

Aclauseis defined by listing the index of each positive literal, and the negative index of each negative literal.
Indices are 1-based, and for obvious reasons the index 0 is not allowed.

The definition of a clause is terminated by a final value of "0".

Example:

c example DIMACS-CNFE 3-SAT
p cnf 3 5
-1 -2 -3 0

10 https://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html
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1 -230
12 -30
1 -2 -30
-1 230

According to this CNF file, the line “1 -2 3 0” means: if bitl is 1, bit2 is 0 and bit3 is 1 then this clause is satisfied.

For tis CNF file, corresponding quantum circuit which is created by Quiskit’s circuit library is as follows:

from qiskit.circuit.library import PhaseOracle
oracle = PhaseOracle.from_dimacs_file('examples/3sat.dimacs’)
oracle.draw()

Qo O
a1
qz

To use this circuit with Grover's algorithm, we want the oracle to change the phase of the output state by 180°
(i.e. multiply by -1) if the state is a solution.

U lx) = { |x) if xis not a solution
oraaclel™/ ™ \—|x)  if x is a solution

For example, the only solutions to this problem are 000, 011, and 101, so the circuit above has this matrix:

—1 -

Uoracle 1

| 1.

Then, let’s look at the steps of Grover’s algorithm:

- : Create an equal superposition of every possible input to the oracle by applying H-gate to initial state
|0) of each qubit. We'll call this equal superposition state |s).

- The next step is to run the oracle circuit (Uoracie) On these qubits.

- The final step is to run a circuit called the 'diffusion operator' or 'diffuser' (Us) on the qubits.

Oracle Diffuser (L)

o— IS

Repeat B(VN) times
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We then need to repeat steps 2 & 3 a few times depending on the size of the circuit. For difficult problems (

), we need to repeat these steps VN times.
For difficult problems, there are a lot of possible inputs and only a small number of solutions. In this case

|'s) is much closed to |XI) ( ) rather than |V) ( ). Let say, the angle
between |s) and |X]) is © at the beginning.
After each iteration ( ), |s) reaches towards |v) by 26
; =L
We see that Sin(6) = W

Since for small 6, we want to rotate |s) around 90 degrees to reach I\/). So, we need VN iterations for
the solution.

from gqiskit import QuantumCircuit

init = QuantumCircuit(3)

init.h([0,1,2])

# steps 2 & 3 of Grover's algorithm

from qiskit.circuit.library import GroverOperator
grover_operator = GroverOperator(oracle)

qc = init.compose(grover_operator)
gc.measure_all()

gc.draw()

do

a1

q>

meas

Then we can get the results from simulator:

# Simulate the circuit

from qiskit import Aer, transpile

sim = Aer.get_backend('aer_simulator’)

t _gc = transpile(qc, sim)

counts = sim.run(t_qc).result().get_counts()

# plot the results
from qiskit.visualization import plot_histogram
plot_histogram(counts)
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We can see that system gives high probabilities on three solutions of this SAT problem.

from qiskit import QuantumCircuit
oracle = QuantumCircuit(2)
oracle.cz(0,1) #invert phase of [11>
def display_unitary(qc, prefix=""):

"""Simulates a simple circuit and display its matrix representation.

Args:

gc (QuantumCircuit): The circuit to compile to a unitary matrix

prefix (str): Optional LaTeX to be displayed before the matrix

Returns:

None (displays matrix as side effect)
from qiskit import Aer
from qiskit.visualization import array_to_latex
sim = Aer.get_backend('aer_simulator’)
# Next, we'll create a copy of the circuit and work on
# that so we don't change anything as a side effect
gc = qc.copy()
# Tell the simulator to save the unitary matrix of this circuit
gc.save_unitary()
unitary = sim.run(qc).result().get_unitary()
display(array_to_latex(unitary, prefix=prefix))

display_unitary(oracle, "U_\\text{oracle}=")

1 0 0 O
01 0 O
Uoracte = 0 0 1 0
0 0 0 -1
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Creating the diffuser:
e Do the transformation [s) — |11) (i.e., x-gate)
e Reflectaround |11) (i.e., the cz-gate)
e Do the transformation |11) — |s)

diffuser = QuantumCircuit(2)
diffuser.h([0, 1])
diffuser.x([0,1])
diffuser.cz(0,1)
diffuser.x([0,1])
diffuser.h([0,1])
diffuser.draw()

o

a1

e Now perform oracle and perform diffuser to get Grover’s algorithm:

grover = QuantumCircuit(2)
grover.h([0,1]) #initialise [s>
grover = grover.compose(oracle)
grover = grover.compose(diffuser)
grover.measure_all()
grover.draw()

do

a1

meas

And finally, simulate the result:

from qiskit import Aer
sim = Aer.get_backend('aer_simulator’)
sim.run(grover).result().get_counts()

RESULT: {'11": 1024} (100% probability of measuring [11))

May 2023
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** Same problem solution with Quirk?!®:

Amplitude of |11) (decimal 3)

-4 Z H H @ z @ H on — — val:+1.00000+0. 000001
J; mag?:100.0000%, phase:+d.00°
7 H T 7 Ty H r 11
12) u on — u —1
N 1 J, | LI J—ﬂa o
® - amplitude

Local wire states

Chance/Bloch

Schoning’s Algorithm

Like random guessing, Schoning’s algorithm chooses an input at random and checks if it works. If it does not work,
algorithm picks an unsatisfied clause and toggles a bit in the string to satisfy that clause. On average it's beneficial
to keep toggling bits in this manner a few times. If the initial guess was close enough, there’s a fair chance we’ll
stumble upon the correct solution. If not, then after some number of steps, the computer starts again with a new
completely random guess. Also, if you create a circuit that carries out the bit-toggling part of Schéning's algorithm,
you can use this as the oracle and use Grover's algorithm to find the best "initial guess".

t

Random |

guessing | o~ ors
| algorithm
|
|

Schoning’s
algorithm

Schoning +
Grover

Algorithm running time

Problem size (number of bits)

11

https://algassert.com/quirk#circuit={%22cols%22:[[%227%22,%227%22],[%22H%22,%22H%22],[%22X%22,%22X%22],[%22Z
%22,%227%22],1%22X%22,%22X%22],[%22H%22,%22H%22]]}
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Qiskit Global Summer School - 20222

History of Quantum Comjputing

positive ‘-———_q_D

o

Z8ro

negative >

Magnetism of silver atoms — result: spin up or spin down.

Deflection
zero|
'
# of atoms
Silver atoms

FL 50%
O —
(D i 50%

m 100%
i t - 0%
t - ignore
= 100%

+ "' i 0%
- ' - ignore

anti aligned atoms

12 Olivia Lanes (IBM), Maria Violaris (IBM ), Jeffry Cohn (IBM Research Staff Member)
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double-
screen
EleCtronS | 4 PARTICLE PATTERN
electron ’
beam gun WAVE PATTERY

mterference
pattern

Measuring the double slit
(if you watch which slit the electrons go through, you'll see particle pattern, if you don’t watch, then electrons
will interfere with itself and go through both slits at the same time [superposition principle of quantum
mechanics], then you’ll see wave pattern)

Double-slit pattern

Superposition: Some combination of |+) and|-)  This state can be written as: ¢= |+) F |-)
Popular superpositions and position of quit in bloch sphere for this veector:

1 z
[+) = E(IO) +11)

=) = —=(10) — 1))

V2 Ty e

i) = %(lo) +i|1)) ;Tj)‘/ Ty

1
I=i) = 7= 10) ~il1)) 1)

“Quantum mechanics forces us to the brink of implausibility ... but not beyond”

Single particles can exist in state of superposition, which combines multiple measurable states with certain probabilities
associated with them.

e Single particles can interfere with themselves due to this nature.
e Upon measurement, only these definite states can be observed and the outcome is probabilistic, not determinate.
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10)

|0)+e*0|1)

Superposition
State

11)

For quantum computer that is ready for quantum simulation:

We should have quantum bits.

They should be initialized into a well known states.

These states will have relatively-long coherence times (it will stay in the state we initialized in, and not just decay into the
ground statebefore we can run quantum algorithms and quantum gates on it).

We need a universal set of quantum gates and a qubit-specific measurement capability (we can individually measure every
single qubit in the system without perturbing the other qubits as well).

Superposition: ¥ = \%(IO) +|1)): |+) and |-)

Entanglement: To create entanglement, we need to apply multi-qubit gates, commonly cx (CNOT) or cz.

1
V= ﬁ(li)l) +110))

|01) is another way of writing a tensor product |0) @ |1)

Example:

Since |'(l)) = C00|00) + C01|01) + C10|10) + C11|11) =

1
1 1 1
|+0)=<ﬁ(1)>(3)=ﬁ (1) =ﬁ(|00)+|10))
0

|+0) is a two qubit state vector that actually describes a pair of single qubit states: |+) and |0). We called |+0) product
state®® because the state of |+0) belongs to first (on the left qubit which is +). Because as we see in the state vector:

e |00): Both qubits are in the state |0).

e |10): The qubit states are |1) ( ) and |0) ( )-
[+0) = L(|00) +]10))

13 In product state, each qubit can be independently described by a single qubit state with two amplitudes.
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Complex Numbers Recap

Im
A ;
z=x+iy
yr- Im
/|
A6 .
0 W e
r\ !
“ypo b
Z=x—iy
z=x+1y e =cos@ +isind |e®|=1 (Euler's Equation)

z=re® =rcos6 + irsind
x% +y? =7r2(cos?6 + sin?0) =r?

Complex Conjugates & Hermitian Conjugates

Complex conjugate: z* = Z = x — iy =re™®

Norm squared: |z?| = z*z = r?

a
Wy =(}) = W)t = (| = (a,b)
" . a c a* b*
CH = T =
Hermitian conjugate: H [b d] =>H [c* d*]
* All quantum computations and quantum states live in a vector space we call the Hilbert space, where H = c*"

Orthogonality & Inner Products

(a|B) = (B|a)* =ar*bi+ ax*ba+. .. + an*bn : Inner Product

In the other words:
a

forpy=(5) and 19)=(3) = @Ig=a’y+ps

e (Yly)=1
o (YD) =(DPlp)*
o If(Y|®P)=0= yPand ® are orthogonal each other. (completely opposite physical reality like heads & tails)

Example:

3+iV3 1 1 V15
4l |0)+§|1) |b)=Z|0)+T|1) => calculate {a|b)

la) =

Answer:

by (3-V3 1 Ys \ 3-iv3 V5 3+2v15-13
<a|)_( 5) vI5/, )~ 16 A 16
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Orthogonal & Orthonormal

oy, Z

= The two orthogonal z-basis states of a qubit are |0) and | 1)
I} = The two orthogonal x-basis states of a qubit are |+) and |-)
= The two orthogonal y-basis states of a qubit are|i) and |-i)

- "“B/H/"q:l::h‘h:

X o) + 1)

Example: The qubit state |y) = ? [0) + % [1) can be expressed in terms of |+) and |-) as follows:

1 1
|0)=ﬁ(|+)+|—)) and ll):ﬁ(H)_l_))

V3 1 V31 V3+2 V3-2
10 +511) = 4\/_(I+)+I -N+= \/_(H)_H)_T( It I—>)

lp) =

e Fortwo base qubit state @1 and ®z: if (1| @1) = 1 and (P1]| P2) = 0, then they are said to be “orthogonal” and

Ill

“orthonormal”.
e Any qubit state can be expressed as: [) =(0|P) |0) + (1|W) |1) =(+|WP) |+) + (-|P) |-)

Example: The qubit state [) = ? |0) + % [1), find the |+) and |-) base representations and calculate o ( )

Answer: For |[{)y =a’ [+) + B’ |-), o = (+]|).

o = (1) = —= (0] + (1))

(\/5 _V6+v2
V2

0+2im) =Lt
2 \/_ \/_ 4
Example:
6
la)y = cos( ) [0) + e‘¢sm< ) [1)
Find |b) such that |a) and |b) are orthonormal.
Answer:
For this antipod requests,
0->m-06
o>+ P

So:

-6 .
5 ) |0) + /™ *P)sin (n

_9)|1>

|b) = cos (n

Example: Find | b) such that it is orthonormal with the following qubit |a):

3 1
=210+ 21n
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Answer:
T V3 LT 1 . T
Cos(g) == =>Sln(g) =3 and if weuse ¢ =0 => use 6 =3 $=0
Then, after we apply antipod requests ( ) we get ©'=2m/3, ®’'=
So:

|b)—cos(9,)|0)+e‘¢’sm( )Il) |0>—§|1)

Outer Product
forp)=(5) and 19)=(}) = wol=(g. 5o
(¥XPDt = )|

[0}O0] + |1)(1] =]|00)00| + |01)(01]| + |10){10]| + |11)}11| =1 completeness

Tensor Product

|a)&® |b)= |ab)
Co
1) = o100} + ¢;[01) + ¢,|10) + 5] 11) = 2 and (| =(c; ¢ ¢ )

C3

a <b1> a; by

(al) ® (bl) — 1 b2 — a1b2

a; bz a <b1> a2b1
2

ayb,

Example:

ooy =10)® 10)=( %)=

O O O

Example:
Rewrite the following two qubit states as a tensor prod uct

1

—00) + —= |01)+ |10)+ |11)

V6 \/_
Answer:
The first vector of state comes from the first item of first states of tensor product and first item of second states, and so on.

1 1
IOO) =>—
V6 \/§ x/E

So, the result is:

i|0)+ E1 ( [0) + 1)
N ;0@ (5 f|>
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Example: Try to separate this state into a tensor product:

i|00>+i|11>
V2 V2

Answer:

It is impossible to separate these two states! Because this is an example of entangled qubits which by definition cannot be
described by their individual parts alone (cannot be seperated). Entangled states can only be described by the sum component
of all of the different states which make up the entangled state. So, you can not separate and measure each individual qubit

any longer.

Quantum Calculation Basics

Amplitudes
Amplitudes are probabilities with magnitude and phase (direction). So, the result of phase is that, when we add two amplitudes

they can cancel each other. This behaviour is called “interference” and this is what causes the unexplained behaviour.

®+@=®"’

Magnitude: +0,8 + 0,6 = 0,31
Phase: 30+ 190=70

To find the probability of measuring an outcome, we square the magnitude of that outcome’s amplitude.

Amplitude is a complex number.

Probability Amplitude

square
magnitude

[]

Magnitude: 0.25 Magnitude: 0.5
Phase: 310°

Quantum states are normalized, and probability is calculated by the norm squared of the amplitudes:

1
I¢>=ﬁ(l0>+ll>)
W) = (= o1+ D | (= 10y + 1) | = 5010y + 5 (111) = 1
Wi = Qo+ (ap |{ S0+ 1) | =3 S =
Example:
What is the probability of measuring |1) from the quantum state:

(W) = %(IO) + ei?n|1)>

Answer: We should take complex conjugate times the original coefficient of the number in front of the one state and
multiply those together:
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Hint: Notice that probability of measuring |0) is % so the probability of measuring |1) should be % because total of them
i
should be 1 due to normalization rules. So, % is just a phase that does not actually end up mattering when you go to make a

measurement.
Operators
Operators changes the state of qubits ( ). Operator is symbolized as “A” with a little triangle cap (
), as shown below:
A=A ( )
Eigenvector Equation: A|{) = al|y) (if lw) is an eigenvector of A)

If |Jr) is not an eigenvector of A, then it has no specific associated eigenvalue of A, and the observable does not have a single
definite value in that case. Instead, the measurements of the observable A will each yield an eigenvalue with a certain
probability that’s related to the decomposition of | ) relative to the orthonormal eigen basis of A.

Eigenvalue: Measurable and real value.

Summary:
e Quantum observables ( ) are Hermitian operators (

e They all have real eigenvalues.
e  Eigenvectors with different eigen values are orthogonal ( ).
e Eigenvectors of an operator form a complete orthonormal basis (

Gates

Gates are another way of changing quantum state. We can enact on the quantum computer laboratory. Big series of gates
approximately be equal to a theoretical operator. A gate is a linear map of the quantum system. Linear means that, it can be
distributed across the state even as a superposition, but it still must be equal to that total probability of one.

Quantum gates are linear maps:
Ualo)+pB11))=aUl0)+BU[1)

(Total probability must remain equal to 1.)

Gates are represented by matrices which can be written as a combination of the outer products:

X = [2 é = |0)(1[ + [1)(0] = bit-flip gate

X10)=11) X|1)=10)
H = i[1 1 ] = Hadamard gate
V211 -1
H[0)=(+) HI1)=]-) H[+)=]0) HI-)=11)
** Gates must be unitary:
utu=u ut=1
Ila)=1]a)
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[1 0 0 0]
01 0 0
I, =[1] Q:[é (1’ L=lo 0 1 0

000 — 1
X*X =X X*=1? = I (because X is a quantum gate, it must be unitary)

Time Evolution

What happens if we wait to measure, and let |s) evolve naturally? ( )
Evolution of state |110) under Hyeis State Upon Measurement
= 1.0 /
~
n
v 0.8 /
2 0.6 / = =
o \ / E
Z / b
z 0.4 /
1]
a i - -
g_ 0.2 \/ 00 001 01c 011 10C 101 11 11
T T T Computational basis states
0 1 2 3
time

3 states of quantum simulation:
Quantum state preparation:
e Time evolution ( )
e Measurement (

Real World Hardware
Development Roadmap | &z

2020 o

Prototype quantum software applications Quantum software applications

Machine leaming | Natural science | Optimization

Quantum algorithm and application modules

Machine learning | Natural science | Optimization

Dynamic ¢ s Threaded primitives Emor suppression and mitigation Emor comrection

Falcon (] Hummingbird & Eagle (] Osprey @ Condor Flamingo Kookaburra Scaling to

27 qubits 65 qubits 127 qubits 433 qubits 1,121 qubits 1,386+ qubits 4,158+ qubits 10K-100K qubits
with classical

and quantum
’ ‘ ‘ B

Heron Crossbill
133 qubits x p 408 qubits

<&
0‘\

IBM Quantum Computer Development Roadmap
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Heron
133 qubits x 3

Universal bus

Controller

2025
Quantum parallelization of
multi-chip quantum processors

Kookaburra
4,158+ qubits

IBM Online Quantum Computer Access Address: https://www.ibm.com/quantum ( )

The Josephson Junction

Potential energy

> O

Dr. Mustafa AFYONLUOGLU
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Normal reaction ( ) of a circuit ( ) that represents equally spaced

energy levels ( )

4 ~__Potentialenergy -~
l \ —

)

- 1 Superconductor
¢,] Insulator

" Superconductor
; I

T ‘ e
I = I, sin($) l9)
E = Ejcos(¢)

Josephson junction that stretches potential energy well in such a way that the rungs on the ladder no longer equidistant, so
we can take the lowest two energy level ( ), and isolate those with a specific pulse at that
transition energy and call that our “qubit”

:SSCD

= el

,ﬂg) Si)

SR > o

> 8 L = _-I_
] Y
777

Energy

(@) LC oscillator circuit behaving a harmonic oscillator with equally spaced energy levels. (b) Equivalent LC
oscillator with inductor replaced by Josephson junction behaving an anharmonic oscillator. 15

How do we measure a qubit ?
- We never interact with it directly.
- We couple that qubit to a 2D or 3D resonator.
- Qubit will have an effect on that resonator.
- We can see that effect by interacting with that resonator. (

14 A resonator is a device which exhibits resonance or resonant behavior (
). An oscillator is an electronic device which produces periodic oscillating electronic signal. (

)

Bhttps://www.researchgate.net/publication/358153899 Superconducting Radio Frequency Resonators for Quantum Computing A Sh

ort Review
Dr. Mustafa AFYONLUOGLU
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fa
Microwave drive
dispersive shift y
Readout
amplitude
4/% +Qh
- g
fa

Measurement in room temperature:

Dilution refrigerator = 10 mK

Q

- Send a pulse of microwave light from a generator down into coaxial lines of the fridge.

- Pulse will interact with the qubit. When it leaves the resonator, it will be shifted either down or up, depending on if
that qubit state isin “e” or “g”.

- Ifyou plot this microwave tone in the 1Q space or the imaginary real space as a Gaussian blob, you would be able to

“, n w_n 16

see that blob shift left or right depending on if that qubit state is “e” or “g”.

Building Blocks of Quantum: From Linear Algebra to Quantum Circuits

Quantum Gates

X gate is 180-degree rotation on X axis in Bloch sphere.
X|+) = 1_X(|1) +10)) = 1_(|0) +11) = |+)
=5 =5 =

~ |+) is eigenvector of X with eigenvalue 1.

16 Animation of this progress: https://youtu.be/zG1ZxZhMjpQ?list=PLOFEBzvs-Vv05097bYt801I8RalpoMASQ&t=2174
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- 1 1
X1-) =\/—EX(|0)— 11)) = —E(IO) — 1) =-1-)

~ |-) is eigenvector of X with eigenvalue -1.

Example: For combination of plus and minus, global phase affects measurement outcomes as follows (

):
L

X10) = —=X(14) + |-) -=

7 () —1-N =11

Y gate is 180° rotation on Y axis in Bloch sphere. Z gate is same for Z axis.

1

Related matrix is: ((: _Ol) for Y gate and (0

0
_1) for Z gate.

General value for eigenvectors for unitary matrices is:a = e'¥:

Ulp) = alp) = UlPNT = @|UT = (Pla*
W|UtU|y) = aa*(ply) = la*| = 1
For generalized state of a qubit | ) = a|0) + B|1):
Z|g)=al0)-B|1)
X |p)=all1)+B|0)
XZ | ) = a|1) - B|0)

Hadamard gate: We can use this gate to create superposition from single qubit. ( )

H[0)=]+) HI1)=]-) HI+)=10) HI-)=11)

Hadamard Gate

1
H=lp 4 w=n mrmy =) =)
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Phase Gate:
P :((1) e?rb)
> ¢
_r T 0 T T
- 2 4 4 2 T
[ | | | | | |
AR NGRS IEY LAY IR
6o (0 (Y

Bra-ket for Gates

Outer product: |a){b| = |a X b]|

o= (s 0= 8) o= () - 09 - ()

So, we can express any matrix in terms of our bra-ket notation.

al0X0] + B10X1| + y|1X0| + §]1X1| = (;’/‘ ﬁ)

1)
a2 ‘32
al+X +| + BI+X = +y|=X +] + 8|-X —| =(y2 62)
( )
Example:
001y ) i
X=(1 o)=loxl+I1xo| X10) = [0X1]10) + [1X0] |0) = |1)

Inner product: (a|B) = (B|a)* = a1*bi+ ax*ba+. . . + an*bn

Example: the inner product of |x1) and |x2) is:

(rilry) = (af g1 (fj,g) = By +alpy

** The inner product of a qubit state vector with itself is always 1:

(41)
(alx) = (af B (o) = o + alar = laol? + e = 1

Example:

Dr. Mustafa AFYONLUOGLU ﬂ



Multiple Qubits

Tensor product:

[a)&® [b) = |ab)
by a1by
n (bz) _ [ a1b2
by | azby
2 (bz) axb,

(A®B)(|a)® b)) = Ala)®B|b)

if la) = (Z;) and |b) = (Zi),then la) ® |b) = : states of both qubits

Example:

(X®1Z)(101))=X[0)Z[1)=|1) (-1) =-[1)

Example:

(XQ®Z)(10+))=X[0)Z |+)=]1) |-) =|1-)

Example: For qubits |x) = oo |0) + a1 |1) and |y) = o |0) + B1 |1):

)& 1y) = (a0 [0) + a1 [1)) &® (Bo [0) + B2 [1))
= oo |0)®|0) + a0 B1|0)RQ|1) + a1 fo [1)R|0) + o1 B1 | 1)R | 1)
= oo B0 |00) + oo B1 |01) + a1 fo |10) + a1 B1]11)

Definition:

for la)= ) aij|la;) and |b) = ) PBylby) we have :
D@1 =Y > afilla) ®16) = Y > afillabe)
7 & 7

Quantum Circuits

Classical
wires information

0y —E8 @
0y I

1) =
lp) — W
2-Qubit Gates

C-NOT (CX) gate (controlled-NOT gate) : Creates entanglements between qubits.

CX |00) = | 00)
CX |01) = |01)
CX |10) = |11)
CX |11) = | 10)

May 2023

> CX gate is controlled on the first qubit and targets on the second qubit. If the first qubit is zero, then it does nothing to the
second. If first qubit is 1, then it applies the X gate to the second and flips it to whichever state it adds up it after applying the
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|00) 5 (|0) + |10 ]0) cvot [00) + |11) = Maximally entangled= |+ +) + |— —)

Because if we measure the first qubit and get “zero” value, we know the second bit is “zero”. If we measure the first qubit
and get “one” value, we know the second bit is “one”. The corresponding circuit is as follows:

10y G+

10y — éﬁ

In order to measure in plus minus basis ):

o @ 0 @
P——

These are important entangled states. By using previous circuit with different input pairs such as |0) & |0), |0) & |1), [1) &
|0) and |1) & | 1), we obtain the following outputs that are called as bell states:

|@*) = 100) + [11)
|@~) =101) +|10)
[*) =100) —|11)
[~) = 101) — |10)

These bell states form an orthonormal basis:

(dilp)) =0
Each bell states are maximally entangled.

Pure and Mixed States
For entangled qubit pair, if we want to describe the state of one of the qubits, we need to introduce density matrix:

Letsay: [y) = [00) + |11)

e = [pXy| = (100) + [11))((00] + (11]) = [00){00] + |00)(11| + [11)(00] + |11}11| =

— o or
co oo
co oo
o O R

This means, we can represent our overall state of the two qubits this matrix called “density matrix” instead of the ket
notation, which we called the state vector.

Partial trace: If we call overall state Qi2, then to get g1, we do the partial trace over the second qubit of g12:

01 = tr012
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So the way that a trace works is that for a matrix, the trace is the sum of the diagonal elements. And in the bra-ket notation,
we do the bra of each basis state and ket of each basis state on either side of our state to extract the diagonal elements. And
then, we add them together to get the trace of a matrix.

> wjlosslt;)
J

If we do partial trace, this means that we are only doing this for one of the qubits:
[00)¢00] + [00)(11] + [11)00] + [11){11] = [0)(0] ® [0XO0] + |0X1] ® [0)(1] + [1)X0] ® [1XO0] + [1X1] & [1)1]

So, the density matrix for first qubit is:

1
01 = try01, = |0X0| + [1X1]| after normalizaton = E((l) (1))

For the second qubit:

. 11 0
0, = try04, = |0X0| + |1X1]| after normalizaton = E(O 1)
Result: If we look at the each individual qubit on its own, it’s as though it had half probability of being prepared in the “zero
state” and half probability in the “one state” but it is a statistical mixture of “zero” and “one” (
) because we do not know which is which. So, it’s different to having the state being zero plus one ( ).

Because we see statistical mixture of zero and one, g1 and gz are mixed states.
e They do not have a definite state that we can write out using a state vector.
e To write it using a state vector, we need to look up both systems together and then we have this overall entangled

state ( ). So the individual states we have here ( ), they don’t tell us whether these qubits are
entangled or not, they just mean that will get outcomes as though we have a statistical mixture of the state zero and
state one.

e The significance of mixed states on the Bloch sphere is that pure states are all on the surface of the sphere whereas
mixed states are inside. Every point inside the Bloch sphere can be represented by a mixed state.

Quantum Teleportation

IT allows us to get a quantum state and then by doing some interactions between that state and another quantum state, which
we know is entangled with a far away quantum state that someone else has, we can make out two qubits interact, send that
person some classical information. They can use that to reconstruct our quantum state, which was unknown on wherever they
are in the universe. It is transport of the state of some unknown quantum system from one place to another, by only sending
classical information from one place to another.

Example: A and B are in different cities, and they have only a telephone line for communication. A and B has one entangled
qubit and A want to transport the unknown state of qubit ) to B:

Answer: The quantum circuit is as follows. A only informs B for the measured state of the first qubit and B then applies X
and/or Z gate to obtain the state of (.
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For ) = a|0) + B[1):

| )00y = (a|0) + B|1)) (00) + [11)) = | 000) + | 011) + B|100) + B|111)

After applying CNOT gate = a|000) + a|011) + B]110) + B|101)

After applying H gate = «|000) + | 100) + a|011) + «[111) + B|010) - B|110) + B|001) - B|101)
= 00) (a|0) + B[1)) + [10) («]0) - B[1)) + [01) (a|1) + B[O)) + [11) (|1} - B|O))

= [00) [®) + [10) Z |9} + |01) X [) + |11) X Z [ )

o if Ainforms that measured state is |00), then B directly gets .
e if Ainforms that measured state is |10), then B applies Z gate to get .
e if Ainforms that measured state is |01),

)

e if Ainforms that measured stateis |11

then B applies X gate to get .
then B applies XZ gates to get .

) —— T H _,fﬂ > 500%— 0 = G- G- ——
G- G-8
0y H 50.0% — 5 ——
W A e~ e-m
N o < — e

— —_— '
o \.9_ \9— 1
ocal wire states |cn |_ Final amplitudes
Chance/Bloch (assuming
measurement
deferrad)

Related quantum circuit diagram?’

17 Use this link to open related quantum circuit design and simulation:
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[%22Bloch%22,%22%E2%80%A2%22,%22X%22],[%22%E2%
80%A2%22,%22X%221,[%22H%22],[%22Measure%22,%22Measure%221,[1,%22%E2%80%A2%22,%22X%221,[%22%E2%80%A
2%22,1,%227%221,[1,1,%22Bloch%22]1,%22init%22:[%22+%22]}

Dr. Mustafa AFYONLUOGLU



https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[%22Bloch%22,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,%22X%22],[%22H%22],[%22Measure%22,%22Measure%22],[1,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,1,%22Z%22],[1,1,%22Bloch%22]],%22init%22:[%22+%22]}
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[%22Bloch%22,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,%22X%22],[%22H%22],[%22Measure%22,%22Measure%22],[1,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,1,%22Z%22],[1,1,%22Bloch%22]],%22init%22:[%22+%22]}
https://algassert.com/quirk#circuit={%22cols%22:[[1,%22H%22],[%22Bloch%22,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,%22X%22],[%22H%22],[%22Measure%22,%22Measure%22],[1,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,1,%22Z%22],[1,1,%22Bloch%22]],%22init%22:[%22+%22]}

May 2023

Hamiltonian Time Evolution

The Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy
and potential energy.*®

The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kinetic and potential energies of
all particles associated with the system. The Hamiltonian takes different forms and can be simplified in some cases by taking

into account the concrete characteristics of the system under analysis, such as single or several particles in the system,
interaction between particles, kind of potential energy, time varying potential or time independent one.

Schrédinger Equation
Schrodinger Hamiltonian:

By analogy with classical mechanics, the Hamiltonian is commonly expressed as the sum of operators corresponding to the
kinetic and potential energies of a system in the form:

Single particle:

A2
A=T+7 7=V, b): T=L,
s 2m
m p =1ihV
02 02 02
Vi=——+—+—:
0x?  0y? 0z?
. R?
>H=—V2+V(rt)
2m
Many Particles:
N —
- — A h?
H= Z T,+V whereV =V(r,ry,1yt) T, = V2,
2m,
n=1
So, Schrédinger Hamiltonian for the N-particle case:
— N
— h? 1
H=—7 1m_nvzn+V(r1)r2""ert)
n=

and general form of the Hamiltonian: the Hamiltonian of the system is the sum of the separate Hamiltonians for each

particle:
N
ﬁ:ZE
i=1

This is an idealized situation—in practice the particles are almost always influenced by some potential, and there are many-
body interactions.

18 https://en.wikipedia.org/wiki/Hamiltonian (quantum mechanics)
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Schrodinger Equation:

The Hamiltonian generates the time evolution of quantum states.

_0 R — ~
ih% = H|y) where h: JH:

Planck’s constant: defines the quantum nature of energy and relates the energy of a photon to its frequency:
h=6.62607015x10734 joule-hertz™? ( )

Hermitian: Hf = H where T = transpose & complex conjugate

E, = - 0

E;

Ex: eigenvalue = energy of system = = H =Y, Elk)k| = diagonal matrix

0 . E,
where k: energy eigenstates
Ground state energy: Lowest possible energy = lowest eigenvalue in the matrix
Example: H = hwX

Eigenstates: |+): +hw, [-):-hw = lowest eigenvalue = -hw = ground state energy = |-)

Exponential of a Matrix

In a matrix in a diagonal form:

for M = Z exlk)kl  f(M) = f(ex) kXKl

k

So, if we apply this rule to exponential function:
exp(M) = exp(ey)|k)k]|

Run this result in a Z gate:

o=} 8), onan=(%0 L 2,)

Solving Schrodinger Equation

Given the state at some initial time (t=0), we can solve it to obtain the state at any subsequent time. In particular, if H is
independent of time, then:

$ () = exp || 1wy

oY) -
lhw = Hlll))
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_ 0 _ 0 —iH - iH
i Y(©) = ih-exp [th] (0))) = —ih=H exp [%] (0)) = Hp(t))

For time t1 to ta:

R e [17C)

iH(t, —ty) .
— :unitary quantum gate

U(ty, t,) = exp [—

By using this unitary gate, we can find |s(t2)) = U| (1))

Checking Unitarity

U = exp [_ iH(tZE_ t1)]

H(t,—t H(t, —t HY(t, —t H(t, —t
Ut = exp P%} exp P%} — exp [%] exp P%} — exp[0] = 1 where H' = H

Commutativity
For operators A and B we can say A and B commute if AB = BA . It is named as ‘commutator’ and shown as

It means if we apply first A and then B to a state, it gives same result if we first apply A and then B operator.

If AB = - BA then they are anti-commute and shown as
Exponentials with Commutativity
Diagonalizable: If any two matrices that can both be written in the “same” basis are simultaneously diagonalizable.

If the matrices commute:
exp(A) exp(B) = exp (A + B)

Proof:

for A=Y aglk)k| and B =) bylk)k|
2.0 2.0

exp(4) exp(B) = exp (Z ak|k><k|> exp (Z bk|k><k|> = > exp (@olk)kl ). exp (bolk)k]
k k k k

= Z exp (a + b)lk)(k| = exp (4 + B)
k

Example: The Z gate is diagonal in the computational basis [0) and [1) whereas X gate is diagonal in [+) and [-) basis. So,
they don’t commute, and they are not simultaneously diagonalizable.

Unitary Gates © Hamiltonians
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For any unitary gate U = exp (iK) where K is some Hermitian operator =

K = —ilogU = —ilogz U, k) (k| Z U, k(K|
k k
- —iZlogUu k| = —iZlogeiwk ) (k|
k k

- —iZ il k)k| = zk:wkuc)(m — K* = hermitian

Evolutions of Subsystems
Atom interacting with laser beam with varying intensity of © = open system:

U

O: intensity of laser

We can describe them altogether by a joint Hamiltonian to describe the system as a whole. We can consider the Hamiltonian
just for the atom so this will be an approximation to the actual evolution of the atom, and this will correspond to a unitary
gate. So, we can approximately model the dynamics of this atom by a unitary gate. This is important because if we can model
it by unitary gates, then we can start to think about how to simulate it on a quantum computer because everything there is
unitary apart from measurements.

Simulating Hamiltonians

#+ Simulating Hamiltonians classically are very inefficient.

Remember that Hamiltonians are described by the Schrodinger equation:

Z0lY) -
lh? = Hlll])

Let’s define the state of a particle as a function of its position using the inner product (x| ) = ys(x)

Then, Hamiltonian of a single particle is:

_0 02
ihalp(x) = [—i— + V(x)]lp(x) : N

2m dx2

If we have one qubit, we need to solve two equations: we need to know how |0) and | 1) evolves and then we know how any
linear combination of them evolves.

If we have two qubits, we need to know how all 4 computational basis states ( ) evolve. So, we need
to solve four equations.
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Similarly, for n qubits, we need to solve 2" equations which increases exponentially. That’s why classical simulation is slow (

)

Local Interactions
We can make the assumption that they are interacting locally rather than distant parts of the system are interacting.

In the previous interaction example, notice that Hz(8) varies over time. Here, we first assume that Hamiltonian that is NOT
varying over time. So, H is time independent. In this case, we can use the earlier Schrodinger equation:

9 () = exp |~ 1wy

For simplification of this equation, we can split our system we’ve assumed local interactions as mentioned before. So, we can
split Hamiltonian into small a sum of smaller Hamiltonians (let say, L parts) that are each acting on only a few qubits:

Such that, let say if Hi= X3X4, it means that an X gate is applied to qubit 3 and another X gate is applied to qubit 4. Again, if H2
=Zs, it means that Z gate is applied to qubit 5. So, we can have Hamiltonians corresponding to interactions between different
qubits or just acting on a single qubit as well.

For smaller subsystems, e "iAkt
H case. It means:

, it is easier to approximate quantum circuits, but we can’t rely on out operators commuting the

eth — e—iZkat +* eiHl + ein ...eiHL — g eint

Trotter Formula
Let say we’ve Hermitian operators A and B:

lim [ ehrnenn h

n—-oo

( iAt iBt)n i(A+B)t
=e

or
i Bt _
lim <e men ) = el+Bt withh =1
n—-oo

So, if we use the approximation previously mentioned:

ei(A+B)AL — oiAALHIBAL 4 ()(A12)

Simulating Schrodinger Equation
2

H = f—m + V(x) : Hamiltonian of a single particle
d
- ax
W)= [ bty ox = S = > alkx)
—w R
k=—2x
d: total distance, Ax: space steps, particles moves from |-d) ( ) to |+d) ( ).
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Total length ( ) from -d to +d ( )is (2d/Ax)+1. So lets find the number of computational basis
states ( ):

T P (2d+1)
Ax h n=108 Ax

~ Advantage of using qubits — we can remove exponentials in classical states.
We know that, [V(x), p/2m] #0

and then, let’s compute the exponentials of the Hamiltonian individually and combine them as shown previously:

. i
V(x) - e WKAIAL - gng % - UFFTfo"FT =p =>lk)- UFFTe_zmulgFle)

~ So, we reduce our simulation of the Schrédinger equation to simulating these individual Hamiltonians of the different
subparts of the overall Hamiltonian.

Fourier Transform (FT)

QFT: Performs the Fourier Transform of amplitudes of a quantum state in a way that is much faster than what a classical
computer could do. It does not allow us to perform usual Fourier Transforms that we can do any faster than a classical
computer, because of the difficulty in retrieving the information from measuring quantum state. But we can use this technique
of the QFFT within various other algorithms and it’s actually extremely useful for that reason. (

Discrete FT:
) 1 2w
aq, as ...ay — k=_z a]e N
VN £
= QDFT:
[0), ... IN-1)—|j) where:
N-1
) 1 Zb Zﬂijklk)
- — e N
lix) JN 4 j
k=0
FT of an overall state:
N-1 N-1
.. unitary
> ali) =5 bk
j=0 k=0
Example:
m4 HHsHT 500%— o — G- G-
l d b eu
) H 4 s 50.0% — 0
G- -18L
)] * H 50.0% — o= | I 11_

Three qubits Fourier Transform
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An application Area of FT: Phase Estimation
Ulu) = e2™®|y)
Phase estimation happens in a few stages:
Stage-1:
Register-1: # of t register ( ) depends on how well we want to estimate the accuracy of Y (in

eigenvalue) and what probability we want to get a correct answer.

Register-2: Consists of many qubits we need to characterize U state.

* Then we apply Hadamard gate to each qubits in register-1 and we do a series of controlled gates from the first register to the

second register.

* We do our first control gate from the bottom qubit ( ) is a control of Uzo( ) and then we continue
this pattern where we go, next qubit U2 up to U2

* We find that the outcome of the second register is still U because we’ve just been adding phases.

* So, overall phase estimation: When we measure the first register at the end, in the computational basis, what we get out are
the digits of the phase. It means, if ¢ = 0.y, ** ¢, and we can know @ if we know all of these t bits and the states that our

qubits end up in after the first stage. It means, after applying Hadamard and control gates and work through the state of qubits,

we will get:
1 ) )
15t stage: 3 (]0) + e2™0-%¢|1)) + (|0) + e2™0-Pe-19¢|1)) ---

and then after we apply the inverse Fourier transform, it simplifies this expression — |@1@, **- @)
Then we can measure all qubits in the first register in the computational basis and we know the value of ¢ exactly.

|0) mli). _
|u) 4/—

D

|u)

.______.|.__
|

If we cannot prepare the state U directly, we can prepare other state:

¥y = Z cy|u) where |c,|?: probability of correct outcome

u

to obtain the approximate of ¢ value ( )

Complexity
For classical algorithms:
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Time taken
A .
Exponential
e.i. : factorization
n
% Polynomial
\ e.i. : multiplication
e' n?
/’/
- '//
> input size

For exponential, we need exponential time in classical computers. But in quantum, the complexity is shifted from 2" to n?
( ) with Shores algorithm.

Complexity Classes
Bounded-error
Quantum
Polynomial Time
Bounded-error

BQP Probabilistic

Polynomial Time
BPP ‘ Polynomial
deterministic

BQP: BQP is the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of at

most 1/3 for all instances.
BPP: BPP is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error
probability bounded by 1/3 for all instances.

Simulation Problems
For a particular model of a quantum system its simulation consists of the ability to emulate how the state of the system changes
in time. A simulation with the ability to track the wave function as a function in time precisely can also estimate observables®.

The models we examine will be described by a Hamiltonian H ( ) as
long as our systems are closed.

If H is time-independent, then its time-evolution propagator is given by:

[W(O) = U(t, 0)|¥p) = e[ (0))

If H(t) is time-dependent, then the propagator is given by:

13 Observables are the types of things that would be measured in a lab setting and we want to understand how those

expectation values change with time as the wave function evolves.
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t rty

|®P(t)) =T exp U dt’H(t’)] =1- if dt H(ty) + (—i)zf dt dt,H(t)H(ty) + -
0 0 0 Y0

Why Simulation?
e Model validation with experiment
e  Model to model validation
e Savings in terms of time and resources compared to running experiments
e Emergence of states and phases

Gibbs State: It is an equilibrium probability distribution which remains invariant under future evolution of the system. For
example, a stationary or steady-state distribution of a Markov chain, such as that achieved by running a Markov chain Monte
Carlo iteration for a sufficiently long time, is a Gibbs state.?°

Probability Distribution: It is the mathematical function that gives the probabilities of occurrence of different possible
outcomes for an experiment.?*

0.4

0.3

0.2

0.0 0.1

pu—3g p—20 pP—O K p+o  p+20 p+3o

Markov Chain: It is a stochastic model describing a sequence of possible events in which the probability of each event depends
only on the state attained in the previous event.??

0.3

0.7

0.4

Two-state Markov Process

20 https://en.wikipedia.org/wiki/Gibbs state
21 https://en.wikipedia.org/wiki/Probability distribution
22 https://en.wikipedia.org/wiki/Markov chain
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